Advanced Search
HUANG Yiwei, GAO Xiangdong, LI Laiming, MA Bo, ZHANG Yanxi. Study of OCT weld depth curve fitting method for laser keyhole welding[J]. LASER TECHNOLOGY, 2024, 48(4): 590-596. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.019
Citation: HUANG Yiwei, GAO Xiangdong, LI Laiming, MA Bo, ZHANG Yanxi. Study of OCT weld depth curve fitting method for laser keyhole welding[J]. LASER TECHNOLOGY, 2024, 48(4): 590-596. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.019

Study of OCT weld depth curve fitting method for laser keyhole welding

More Information
  • Received Date: July 03, 2023
  • Revised Date: August 27, 2023
  • Published Date: July 24, 2024
  • In order to solve the online detection of laser welding depth of fusion and to solve the problem of optical coherence tomography (OCT) depth of fusion detection signal noise, a percentile filtering plus moving average algorithm was used to fit the weld depth curve. The weld depth of 304 stainless steel keyhole welding process was detected online by optical coherence photomicrographic imaging system, in the process of extracting the percentile depth curves from the original scatter data using percentile filtering; it was found that there were spikes interfering noises in the percentile depth melting curves extracted by this method, and the percentile depth curves were processed by low-pass filtering through the moving average algorithm, and the OCT weld depth curves were finally extracted and fitted from the original scatter data. The results show that, comparing the OCT weld depth curve with the actual weld depth curve on the longitudinal surface of the weld, the measurement accuracy of the OCT depth of fusion curve obtained by this method has been improved by 15% at most. The method is effective in extracting and fitting more accurate OCT weld depth curves from the original scatter data.
  • [1]
    XIAO X, LIU X, CHENG M, et al. Towards monitoring laser welding process via a coaxial pyrometer[J]. Journal of Materials Processing Technology, 2020, 277: 116409. DOI: 10.1016/j.jmatprotec.2019.116409
    [2]
    SANDERS P G, LEONG K H, KESKE J S, et al. Real-time monitoring of laser beam welding using infrared weld emissions[J]. Journal of Laser Applications, Laser Institute of America, 1998, 10(5): 205-211. DOI: 10.2351/1.521853
    [3]
    WANG L, MOHAMMADPOUR M, GAO X, et al. Adjustable ring mode (ARM) laser welding of stainless steels[J]. Optics and Lasers in Engineering, 2021, 137: 106360. DOI: 10.1016/j.optlaseng.2020.106360
    [4]
    李竹曼, 高向东, 张南峰. 大功率碟片激光焊接状态多特征融合分析法[J]. 激光技术, 2017, 41(5): 764-768. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.029

    LI Zh M, GAO X D, ZHANG N F. Analysis of high-power disk laser welding status based on multi-feature fusion[J]. Laser Technology, 2017, 41(5): 764-768(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2017.05.029
    [5]
    FAN X, GAO X, LIU G, et al. Research and prospect of welding monitoring technology based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(11/12): 3365-3391.
    [6]
    ZHANG X, TANG Z, WU Y, et al. Progress in in situ X-ray imaging of welding process[J]. Review of Scientific Instruments, Melville: AIP Publishing, 2022, 93(7): 071501. DOI: 10.1063/5.0074042
    [7]
    HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181. DOI: 10.1126/science.1957169
    [8]
    DUPRIEZ N D, DENKL A. Advances of OCT technology for laser beam processing: Precision and quality during laser welding[J]. Laser Technik Journal, 2017, 14(4): 34-38. DOI: 10.1002/latj.201700021
    [9]
    刘逸飞, 苏亚, 姚晓天, 等. OCT无创血糖检测图像处理最优化方法研究[J]. 激光技术, 2023, 47(2): 178-184. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.004

    LIU Y F, SU Y, YAO X T, et al. An optimization method of image processing for OCT non-invasive blood glucose detection[J]. Laser Technology, 2023, 47(2): 178-184(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.02.004
    [10]
    MIYAGI M, KAWAHITO Y, KAWAKAMI H, et al. Dynamics of solid-liquid interface and porosity formation determined through X-ray phase-contrast in laser welding of pure Al[J]. Journal of Materials Processing Technology, 2017, 250: 9-15. DOI: 10.1016/j.jmatprotec.2017.06.033
    [11]
    LOHAUS L, BAUTZE T, DIEPOLD K. Evaluation of optical sensors for laser welding in a technical cognitive environment[C]//International Congress on Applications of Lasers & Electro-Optics. Anaheim, California, USA: Laser Institute of America, 2010: 1541-1546.
    [12]
    BLECHER J J, GALBRAITH C M, van VLACK C, et al. Real time monitoring of laser beam welding keyhole depth by laser interferometry[J]. Science and Technology of Welding and Joining, 2014, 19(7): 560-564. DOI: 10.1179/1362171814Y.0000000225
    [13]
    DORSCH F, HARRER T, HAUG P, et al. Process control using capillary depth measurement[C]// International Congress on Applications of Lasers & Electro-Optics. San Diego, California, USA: Laser Institute of America Press, 2016: 1505.
    [14]
    谢冠明, 王三宏, 张跃强, 等. 基于光学相干层析的激光焊接熔深检测方法[J]. 光学学报, 2023, 43(11): 1114002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202311014.htm

    XIE G M, WANG S H, ZHANG Y Q, et al. Laser welding depth monitoring method based on optical coherence tomography[J]. Acta Optica Sinica, 2023, 43(11): 1114002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202311014.htm
    [15]
    黄威威, 游德勇, 高向东, 等. 基于相关分析和神经网络的激光焊接稳态识别[J]. 激光技术, 2022, 46(3): 312-319. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.004

    HUANG W W, YOU D Y, GAO X D, et al. Laser welding steady status recognition method based on correlation analysis and neural network[J]. Laser Technology, 2022, 46(3): 312-319(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.03.004
    [16]
    SOKOLOV M, FRANCIOSA P, SUN T, et al. Applying optical coherence tomography for weld depth monitoring in remote laser welding of automotive battery tab connectors[J]. Journal of Laser Applications, Laser Institute of America, 2021, 33(1): 012028.
    [17]
    DUIN R, HARINGA H, ZEELEN R. Fast percentile filtering[J]. Pattern Recognition Letters, 1986, 4(4): 269-272.
    [18]
    BOLEY M, FETZER F, WEBER R, et al. Statistical evaluation method to determine the laser welding depth by optical coherence tomography[J]. Optics and Lasers in Engineering, 2019, 119: 56-64.
    [19]
    MITTELSTÁDT C, MATTULAT T, SEEFELD T, et al. Novel approach for weld depth determination using optical coherence tomography measurement in laser deep penetration welding of aluminum and steel[J]. Journal of Laser Applications, 2019, 31(2): 022007.
    [20]
    SCHMOELLER M, STADTER C, LIEBL S, et al. Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography[J]. Journal of Laser Applications, Laser Institute of America, 2019, 31(2): 022409.

Catalog

    Article views (425) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return