Citation: | HUANG Yiwei, GAO Xiangdong, LI Laiming, MA Bo, ZHANG Yanxi. Study of OCT weld depth curve fitting method for laser keyhole welding[J]. LASER TECHNOLOGY, 2024, 48(4): 590-596. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.019 |
[1] |
XIAO X, LIU X, CHENG M, et al. Towards monitoring laser welding process via a coaxial pyrometer[J]. Journal of Materials Processing Technology, 2020, 277: 116409. DOI: 10.1016/j.jmatprotec.2019.116409
|
[2] |
SANDERS P G, LEONG K H, KESKE J S, et al. Real-time monitoring of laser beam welding using infrared weld emissions[J]. Journal of Laser Applications, Laser Institute of America, 1998, 10(5): 205-211. DOI: 10.2351/1.521853
|
[3] |
WANG L, MOHAMMADPOUR M, GAO X, et al. Adjustable ring mode (ARM) laser welding of stainless steels[J]. Optics and Lasers in Engineering, 2021, 137: 106360. DOI: 10.1016/j.optlaseng.2020.106360
|
[4] |
李竹曼, 高向东, 张南峰. 大功率碟片激光焊接状态多特征融合分析法[J]. 激光技术, 2017, 41(5): 764-768. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.029
LI Zh M, GAO X D, ZHANG N F. Analysis of high-power disk laser welding status based on multi-feature fusion[J]. Laser Technology, 2017, 41(5): 764-768(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2017.05.029
|
[5] |
FAN X, GAO X, LIU G, et al. Research and prospect of welding monitoring technology based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(11/12): 3365-3391.
|
[6] |
ZHANG X, TANG Z, WU Y, et al. Progress in in situ X-ray imaging of welding process[J]. Review of Scientific Instruments, Melville: AIP Publishing, 2022, 93(7): 071501. DOI: 10.1063/5.0074042
|
[7] |
HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181. DOI: 10.1126/science.1957169
|
[8] |
DUPRIEZ N D, DENKL A. Advances of OCT technology for laser beam processing: Precision and quality during laser welding[J]. Laser Technik Journal, 2017, 14(4): 34-38. DOI: 10.1002/latj.201700021
|
[9] |
刘逸飞, 苏亚, 姚晓天, 等. OCT无创血糖检测图像处理最优化方法研究[J]. 激光技术, 2023, 47(2): 178-184. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.004
LIU Y F, SU Y, YAO X T, et al. An optimization method of image processing for OCT non-invasive blood glucose detection[J]. Laser Technology, 2023, 47(2): 178-184(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.02.004
|
[10] |
MIYAGI M, KAWAHITO Y, KAWAKAMI H, et al. Dynamics of solid-liquid interface and porosity formation determined through X-ray phase-contrast in laser welding of pure Al[J]. Journal of Materials Processing Technology, 2017, 250: 9-15. DOI: 10.1016/j.jmatprotec.2017.06.033
|
[11] |
LOHAUS L, BAUTZE T, DIEPOLD K. Evaluation of optical sensors for laser welding in a technical cognitive environment[C]//International Congress on Applications of Lasers & Electro-Optics. Anaheim, California, USA: Laser Institute of America, 2010: 1541-1546.
|
[12] |
BLECHER J J, GALBRAITH C M, van VLACK C, et al. Real time monitoring of laser beam welding keyhole depth by laser interferometry[J]. Science and Technology of Welding and Joining, 2014, 19(7): 560-564. DOI: 10.1179/1362171814Y.0000000225
|
[13] |
DORSCH F, HARRER T, HAUG P, et al. Process control using capillary depth measurement[C]// International Congress on Applications of Lasers & Electro-Optics. San Diego, California, USA: Laser Institute of America Press, 2016: 1505.
|
[14] |
谢冠明, 王三宏, 张跃强, 等. 基于光学相干层析的激光焊接熔深检测方法[J]. 光学学报, 2023, 43(11): 1114002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202311014.htm
XIE G M, WANG S H, ZHANG Y Q, et al. Laser welding depth monitoring method based on optical coherence tomography[J]. Acta Optica Sinica, 2023, 43(11): 1114002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202311014.htm
|
[15] |
黄威威, 游德勇, 高向东, 等. 基于相关分析和神经网络的激光焊接稳态识别[J]. 激光技术, 2022, 46(3): 312-319. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.004
HUANG W W, YOU D Y, GAO X D, et al. Laser welding steady status recognition method based on correlation analysis and neural network[J]. Laser Technology, 2022, 46(3): 312-319(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.03.004
|
[16] |
SOKOLOV M, FRANCIOSA P, SUN T, et al. Applying optical coherence tomography for weld depth monitoring in remote laser welding of automotive battery tab connectors[J]. Journal of Laser Applications, Laser Institute of America, 2021, 33(1): 012028.
|
[17] |
DUIN R, HARINGA H, ZEELEN R. Fast percentile filtering[J]. Pattern Recognition Letters, 1986, 4(4): 269-272.
|
[18] |
BOLEY M, FETZER F, WEBER R, et al. Statistical evaluation method to determine the laser welding depth by optical coherence tomography[J]. Optics and Lasers in Engineering, 2019, 119: 56-64.
|
[19] |
MITTELSTÁDT C, MATTULAT T, SEEFELD T, et al. Novel approach for weld depth determination using optical coherence tomography measurement in laser deep penetration welding of aluminum and steel[J]. Journal of Laser Applications, 2019, 31(2): 022007.
|
[20] |
SCHMOELLER M, STADTER C, LIEBL S, et al. Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography[J]. Journal of Laser Applications, Laser Institute of America, 2019, 31(2): 022409.
|