Advanced Search
YANG Yang, XU Xiping, XUE Hang, ZHANG Ning, ZHANG Yue, SUO Ke. Research on peanut hyperspectral image classification method based on SPA-PSO-BP[J]. LASER TECHNOLOGY, 2024, 48(4): 556-564. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.014
Citation: YANG Yang, XU Xiping, XUE Hang, ZHANG Ning, ZHANG Yue, SUO Ke. Research on peanut hyperspectral image classification method based on SPA-PSO-BP[J]. LASER TECHNOLOGY, 2024, 48(4): 556-564. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.014

Research on peanut hyperspectral image classification method based on SPA-PSO-BP

More Information
  • Received Date: July 04, 2023
  • Revised Date: October 06, 2023
  • Published Date: July 24, 2024
  • In order to improve the accuracy of visible-near infrared (VNIR) hyperspectral peanut image classification and to reduce the computing time of classification detection, a classification detection model based on successive projection algorithm (SPA) fused with particle swarm optimization back propagation(PSO-BP) neural network was proposed. A hyperspectral imaging system was used to acquire VNIR spectral data of seven peanut species samples and conducts background segmentation and extraction of spectral information. After removing the wavelengths that were highly affected by noise and stray light, the wavelengths in the range of 400 nm~900 nm were preprocessed by using Savitzky-Golay convolutional smoothing. The SPA was used to reduce the dimensionality, and 25 characteristic wavelengths were selected by virtue of the root mean square error values. The PSO was also used to optimize the initial weights and thresholds of the BP neural network, and the PSO-BP model was constructed as a classifier for the experiments, and a recognition accuracy of 98.7%, a kappa coefficient of 0.98, and a miss error of 3 for the test set were obtained. The results demonstrate that the accuracy of the model is improved by 2.1%, 8.6%, 3.9%, and 4.3%, respectively, compared with the classification models constructed by the four comparison methods. The proposed method has good application prospects in peanut variety classification based on hyperspectral imaging technology, and provides a new idea for high accuracy and fast nondestructive classification of peanut varieties.
  • [1]
    张智猛, 戴良香, 李美, 等. 花生种子产业现状与发展对策[J]. 中国农业科技导报, 2013, 15(1): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201301007.htm

    ZHANG Zh M, DAI L X, LI M, et al. Current situation and development countermeasures of peanut seed industry[J]. China Agricultural Science and Technology Bulletin, 2013, 15(1): 30-37(in Ch-inese). https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201301007.htm
    [2]
    李万伦, 甘甫平. 矿山环境高光谱遥感监测研究进展[J]. 国土资源遥感, 2016, 28(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201602001.htm

    LI W L, GAN F P. Research progress of hyperspectral remote sensing monitoring of mine environment[J]. Remote Sensing of Land and Resources, 2016, 28(2): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201602001.htm
    [3]
    FENG Y Z, SUN D W. Application ofhyperspectral imaging in food safety inspection and control: A review[J]. Critical Reviews in Food Science & Nutrition, 2012, 52(11): 1039-1058.
    [4]
    ZHU M, HUANG D, HU X J, et al. Application of hyperspectral technology in detection of agricultural products and food: A review[J]. Food Science & Nutrition, 2020, 8(10): 5206-5214.
    [5]
    ZHOU Q, HUANG W Q, TIAN X, et al. Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting[J]. Journal of the Science of Food and Agriculture, 2021, 101(11): 4532-4542. DOI: 10.1002/jsfa.11095
    [6]
    JIN B Ch, ZHANG Ch, JIA L Q, et al. Identification of rice seed varieties based on near-infrared hyperspectral imaging technology combined with deep learning[J]. ACS Omega, 2022, 7(6): 4735-4749. DOI: 10.1021/acsomega.1c04102
    [7]
    刘璐, 邵慧, 孙龙, 等. 利用高光谱激光雷达检测木材的霉变与含水量[J]. 激光技术, 2023, 47(5): 620-626. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.007

    LIU L, SHAO H, SUN L, et al. Detection of mildew and moisture content in timber by hyperspectral LiDAR[J]. Laser Technology, 2023, 47(5): 620-626(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.05.007
    [8]
    邵慧, 靳培龙, 王程, 等. 基于高光谱指数分割的草莓硬度预测与研究[J]. 激光技术, 2024, 48(3): 365-372. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.011

    SHAO H, JIN P L, WANG Ch, et al. Prediction and study of strawberry hardness based on hyperspectral index segmentation[J]. Laser Technology, 2024, 48(3): 365-372(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2024.03.011
    [9]
    SEKI H, MA T, MURAKAMI H, et al. Visualization of sugar content distribution of white strawberry by near-infrared hyperspectral imaging[J]. Foods, 2023, 12(5): 931. DOI: 10.3390/foods12050931
    [10]
    梁栋, 刘娜, 张东彦, 等. 利用成像高光谱区分冬小麦白粉病与条锈病[J]. 红外与激光工程, 2017, 46(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201701008.htm

    LIANG D, LIU N, ZHANG D Y, et al. Distinguishing winter wheat powdery mildew from stripe rust using imaging hyperspectral[J]. Infrared and Laser Engineering, 2017, 46(1): 50-58(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201701008.htm
    [11]
    XUE H, YANG Y, XU X P, et al. Application of near infrared hyperspectral imaging technology in purity detection of hybrid maize[J]. Applied Sciences, 2023, 13(6): 3507. DOI: 10.3390/app13063507
    [12]
    朱潘雨, 黄敏, 赵鑫. 基于SMOTE-UVE-SVM的小麦种子纯度高光谱图像检测[J]. 激光技术, 2024, 48(2): 281-287. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.021

    ZHU P Y, HUANG M, ZHAO X. Hyperspectral image detection of wheat seed purity based on SMOTE-UVE-SVM[J]. Laser technology, 2024, 48(2): 281-287(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2024.02.021
    [13]
    陈彬, 刘阁, 张贤明. 连续投影算法的润滑油中含水量的近红外光谱分析[J]. 红外与激光工程, 2013, 42(12): 3168-3174. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201312002.htm

    CHEN B, LIU G, ZHANG X M. NIR spectral analysis of water content in lubricating oil by continuous projection algorithm[J]. Infrared and Laser Engineering, 2013, 42(12): 3168-3174(in Ch-inese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201312002.htm
    [14]
    白丽敏, 李粉玲, 常庆瑞, 等. 结合SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度[J]. 植物营养与肥料学报, 2018, 24(5): 1178-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201805006.htm

    BAI L M, LI F L, CHANG Q R, et al. Increasing accuracy of hyperspectral remote sensing for total nitrogen of winter wheat canopy by use of SPA and PLS methods[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1178-1184 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201805006.htm
    [15]
    葛艳, 刘杏杏, 谢俊标. 改进粒子群优化BP神经网络的轮毂分类算法[J]. 中国科技论文, 2019, 14(7): 773-777. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201907012.htm

    GE Y, LIU X X, XIE J B. Improved particle swarm optimization BP neural network for wheel classification algorithm[J]. China Science and Technology Paper. 2019, 14(7): 773-777 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201907012.htm
    [16]
    孟庆龙, 张艳, 尚静. 高光谱成像结合BP网络无损检测李子的硬度[J]. 激光与红外, 2019, 49(8): 968-973. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908011.htm

    MENG Q L, ZHANG Y, SHANG J. Hyperspectral imaging combined with BP neural network for non-destructive detection of plum hardness[J]. Laser and Infrared, 2019, 49(8): 968-973(in Ch-inese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908011.htm
    [17]
    许兆美, 刘永志, 杨刚, 等. 粒子群优化BP神经网络的激光铣削质量预测模型[J]. 红外与激光工程, 2013, 42(9): 2370-2374. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201309013.htm

    XU Zh M, LIU Y Zh, YANG G, et al. Laser milling quality prediction model with particle swarm optimized BP neural network[J]. Infrared and Laser Engineering, 2013, 42(9): 2370-2374(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201309013.htm
    [18]
    李东年, 周以齐. 采用改进粒子群优化粒子滤波的三维人手跟踪[J]. 光学精密工程, 2014, 22(10): 2870-2878. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201410039.htm

    LI D N, ZHOU Y Q. 3-D manual tracking using improved particle swarm optimized particle filtering[J]. Optics and Precision Engineering, 2014, 22(10): 2870-2878(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201410039.htm
    [19]
    刘青, 李阳. 基于多尺度径向基函数的时变系统辨识[J]. 北京航空航天大学学报, 2015, 41(9): 1722-1728. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201509023.htm

    LIU Q, LI Y. Identification of time-varying systems using multi-scale radial basis function[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1722-1728(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201509023.htm
    [20]
    朱晓琳, 李光辉, 张萌. 基于CARS-MIV-SVR的库尔勒香梨可溶性固体含量预测方法[J]. 光谱学与光谱分析, 2019, 39(11): 3547-3552. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201911045.htm

    ZHU X L, LI G H, ZHANG M. Prediction method of soluble solid content of Korla Pear based on CARS-MIV-SVR[J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3547-3552(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201911045.htm
  • Cited by

    Periodical cited type(3)

    1. 张国浩,王彩玲,王洪伟,于涛. 改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究. 光谱学与光谱分析. 2025(02): 394-402 .
    2. 谢尚志,陈维娜,李开开,张涛. 拉曼光谱结合深度学习对司法物证中印文色料的分类鉴别. 应用化工. 2025(02): 521-526 .
    3. 李晓龙,殷勇,于慧春,袁云霞. 留兰香高光谱特征波长稳健提取及产地鉴别模型构建. 食品科学. 2024(22): 262-268 .

    Other cited types(3)

Catalog

    Article views (14) PDF downloads (8) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return