Citation: | LIU Haojiao, LIU Lishuang, ZHANG Mingchun. An improved infrared object detection algorithm based on YOLOv5[J]. LASER TECHNOLOGY, 2024, 48(4): 534-541. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.011 |
[1] |
李其昌, 李兵伟, 王宏臣. 非制冷红外成像技术发展动态及其军事应用[J]. 军民两用技术与产品, 2016, 42(21): 54-57. DOI: 10.3969/j.issn.1009-8119.2016.21.029
LI Q Ch, LI B W, WANG H Ch. Development trends and military applications of uncooled infrared imaging technology[J]. Dual Use Technologies & Products, 2016, 42(21): 54-57(in Chinese). DOI: 10.3969/j.issn.1009-8119.2016.21.029
|
[2] |
侯春萍, 张倩文, 王晓燕, 等. 轮廓匹配的复杂背景中目标检测算法[J]. 哈尔滨工业大学学报, 2020, 52(5): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202005018.htm
HOU C P, ZHANG Q W, WANG X Y, et al. Object detection algorithm in complex background based on contour matching[J]. Journal of Harbin Institute of Technology, 2020, 52(5): 121-128(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202005018.htm
|
[3] |
BILAL M, HANIF M S. Benchmark revision for HOG-SVM pedestrian detector through reinvigorated training and evaluation methodologies[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 16(52): 1277-1287.
|
[4] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hie-rarchies for accurate object detection and semantic segmentation[C]// Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE Press, 2014: 277-127.
|
[5] |
LI Y, PANG Y, CAO J, et al. Improving single shot object detection with feature scale unmixing[J]. IEEE Transactions on Image Processing, 2021, 30: 2708-2721. DOI: 10.1109/TIP.2020.3048630
|
[6] |
CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: Survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 23(76): 34-46.
|
[7] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 779-788.
|
[8] |
张明淳, 牛春晖, 刘力双, 等. 用于无人机探测系统的红外小目标检测算法[J]. 激光技术, 2024, 48(1): 114-120. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.018
ZHANG M Ch, NIU Ch H, LIU L Sh, et al. Infrared small target detection algorithm for unmanned aerial vehicle detection system[J]. Laser Technology, 2024, 48(1): 114-120(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2024.01.018
|
[9] |
王云杰, 王艳林, 夏润秋, 等. 大视场红外告警系统中目标高精度方位提取[J]. 激光技术, 2023, 47(2): 200-204. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.007
WANG Y J, WANG Y L, XIA R Q, et al. High precision azimuth extraction of targets in a large field of view infrared warning system[J]. Laser Technology, 2023, 47(2): 200-204(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.02.007
|
[10] |
JIANG P, DAJI E, LIU F, et al. A review of YOLO algorithm deve-lopments[J]. Procedia Computer Science, 2022, 199: 1066-1073. DOI: 10.1016/j.procs.2022.01.135
|
[11] |
TERVEN R, CORDOVA-ESPARAZA D M. A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond[J]. arXiv Computer Science, 2023, 4: 2304.00501.
|
[12] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 75(23): 2004-10934.
|
[13] |
ZHANG Y, GUO Zh Y, WU J Q, et al. Real-time vehicle detection based on improved YOLOv5[J]. Sustainability, 2022, 19: 12274-15427.
|
[14] |
FANGBO Z, ZHAO H L, NIE Z. Safety helmet detection based on YOLOv5[J]. IEEE International Conference on Power Electronics, Computer Applications, 2021, 34(56): 6-11.
|
[15] |
ZHU X K, LYU Sh Ch, WANG X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//International Conference on Computer Vision. Québec, Canada: IEEE Press, 2021: 11539.
|
[16] |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE Press, 2021: 13731-13722.
|
[17] |
WOO S H, PARK J C, LEE J Y, et al. CBAM: Convolutional block attention module[C]//European Conference on Computer Vision. Munich, Germany: Springer Science Press, 2018: 3-9.
|
[18] |
HU J, LI S, SUN G. Squeeze-and-excitation networks[C]//Confe-rence on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 7132-7141.
|
[19] |
TAN M X, PANG R M, LE Q V. Efficientdet: Scalable and efficient object detection[C]//Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2020: 10781-10790.
|
[20] |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
|
[21] |
陈旭, 彭冬亮, 谷雨. 基于改进YOLOv5s的无人机图像实时目标检测[J]. 光电工程, 2022, 49(3): 210372. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202203006.htm
CHEN X, PENG D L, GU Y. Real-time objeet detection for UAV images based on improved YOLOv5s[J]. Opto-Electronic Engineering, 2022, 49(3): 210372(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202203006.htm
|