Advanced Search
WU Qingchao, WU Jian. Rapid detection method of propellant parameters based on pulsed laser[J]. LASER TECHNOLOGY, 2024, 48(2): 171-179. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.005
Citation: WU Qingchao, WU Jian. Rapid detection method of propellant parameters based on pulsed laser[J]. LASER TECHNOLOGY, 2024, 48(2): 171-179. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.005

Rapid detection method of propellant parameters based on pulsed laser

More Information
  • Received Date: February 22, 2023
  • Revised Date: April 16, 2023
  • Published Date: March 24, 2024
  • In order to verify the applicability of the rapid measurement method of energy performance parameters of propellant based on pulsed laser ablation, a pulsed laser interaction platform with energetic materials and an experimental platform for transient diagnoses such as shockwave and plasma image were firstly established. Based on this platform, the shockwave and plasma characteristics of single, double, and triple base propellant and monocrystal rock sugar under pulsed laser ablation were studied experimentally. The influence of laser parameters on the ablation process of pulse laser and the difference of shockwave and plasma image between the single base propellant and monocrystal rock sugar was obtained. The results show that the shockwave and plasma expansion characteristics of single base propellant are mainly affected by the chemical reaction energy release of energetic substances, while that of rock sugar is mainly affected by laser irradiance. Furthermore, taking single, double, and triple base propellants as samples, based on shockwave propagation distance parameters and laser energy parameters, the linear calibration models of shockwave characteristic velocity and its explosive force, explosive heat, and explosive temperature were established by using support vector machines regression algorithm. The determinate coefficient R2 values were 0.9912, 0.9998, and 0.9999, respectively. The results show that this method predicts the explosive force, explosive heat, and explosive temperature of the propellant well and provides a reference for the study of the interaction between pulsed laser and energetic materials.
  • [1]
    李强, 闫光虎, 张玉成, 等. NG含量对改性单基发射药燃烧性能的影响[J]. 火炸药学报, 2012, 35(1): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-BGXB201201016.htm

    LI Q, YAN G H, ZHANG Y Ch, et al. Effect of NG content on burning performance of modified sing-base gun propellant[J]. Chinese Journal of Explosives & Propellants, 2012, 35(1): 73-76(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-BGXB201201016.htm
    [2]
    THOMAS J C, MORROW G R, DILLIER C A M, et al. Comprehensive study of ammonium perchlorate particle size/concentration effects on propellant combustion[J]. Journal of Propulsion and Power, 2019, 36(1): 1-6.
    [3]
    郝海霞, 裴庆, 赵凤起, 等. 固体推进剂激光点火性能研究综述[J]. 含能材料, 2009, 17(4): 491-498. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL200904031.htm

    HAO H X, PEI Q, ZHAO F Q, et al. Summarization of laser ignition characteristics of solid propellant[J]. Chinese Journal of Energetic Materials, 2009, 17(4): 491-498 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL200904031.htm
    [4]
    张陆, 王霆威, 王晓军, 等. 激光敏感型含能配合物类起爆药研究进展[J]. 含能材料, 2022, 30(4): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL202204013.htm

    ZHANG L, WANG T W, WANG X J, et al. Review on laser sensitive energetic complex primary explosives[J]. Chinese Journal of Energetic Materials, 2022, 30(4): 385-395 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL202204013.htm
    [5]
    刘彦汝, 孙杰, 金波, 等. 360 nm紫外激光辐照下HMX晶体的微观结构变化[J]. 含能材料, 2021, 29(12): 1208-1215. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL202112010.htm

    LIU Y R, SUN J, JIN B, et al. Microstructure changes of HMX crystals irradiated by 360 nm UV laser[J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1208-1215 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL202112010.htm
    [6]
    伍俊英, 刘嘉锡, 杨利军, 等. 不同频率飞秒激光脉冲序列加工炸药过程安全性的数值计算[J]. 含能材料, 2021, 29(3): 192-201.

    WU J Y, LIU J X, YANG L J, et al. Numerical calculation of the safety of processing explosives with femtosecond laser sequence with different frequencies[J]. Chinese Journal of Energetic Materials, 2021, 29(3): 192-201.
    [7]
    GOTTFRIED J L. Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles[J]. Applied Optics, 2012, 51(7): B13-B21. DOI: 10.1364/AO.51.000B13
    [8]
    KIMBLIN C, TRAINHAM R, CAPELLE G A, et al. Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations[J]. AIP Advances, 2017, 7(9): 095208. DOI: 10.1063/1.4999793
    [9]
    HAUER M, FUNK D J, LIPPERT T, et al. Time resolved study of the laser ablation induced shockwave[J]. Thin Solid Films, 2004, 453/454(4): 584-588.
    [10]
    LUSSELL F C D, HARMON R S, MCNESBY K L, et al. Laser-induced breakdown spectroscopy analysis of energetic materials[J]. Applied Optics, 2003, 42(30): 6148-6152. DOI: 10.1364/AO.42.006148
    [11]
    ZHANG Zh, WANG A, WU J, et al. Spatial confinement effects of bubbles produced by laser ablation in liquids[J]. AIP Advances, 2019, 9(12): 125048. DOI: 10.1063/1.5127261
    [12]
    葛一凡, 陆旭, 刘玉柱. 基于激光诱导击穿光谱和神经网络的蛋壳研究[J]. 激光技术, 2022, 46(4): 532-537. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202204015.htm

    GE Y F, LU X, LIU Y Zh. Research on eggshell via laser-induced breakdown spectroscopy and neural network[J]. Laser Technology, 2022, 46(4): 532-537(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202204015.htm
    [13]
    GOTTFRIED J L. Influence of exothermic chemical reactions on laser-induced shock waves[J]. Physical Chemistry Chemical Physics, 2014, 16(39): 21452-21466. DOI: 10.1039/C4CP02903H
    [14]
    GOTTFRIED J L. Laboratory-scale method for estimating explosive performance from laser-induced shock waves[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 674-681. DOI: 10.1002/prep.201400302
    [15]
    COLLINS E S, GOTTFRIED J L. Laser-induced deflagration for the characterization of energetic materials[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 592-602. DOI: 10.1002/prep.201700040
    [16]
    KALAM S A, MURTHY N L, MATHI P, et al. Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(8): 1535-1546. DOI: 10.1039/C7JA00136C
    [17]
    BISS M M, BROWN K E, TILGER C F. Ultra-high fidelity laser-induced air shock from energetic materials[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(3): 396-405. DOI: 10.1002/prep.201900130
    [18]
    王茜蒨, 赵宇, 卢小刚, 等. 激光诱导击穿光谱与拉曼光谱技术在危险物检测中的研究进展[J]. 光谱学与光谱分析, 2017, 37(8): 2430-2434. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201708021.htm

    WANG X Q, ZHAO Y, LU X G, et al. Progress in laser induced breakdown spectroscopy and Raman spectroscopy for hazardous material detection[J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2430-2434 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201708021.htm
    [19]
    郭文灿, 郑贤旭, 张旭, 等. 含铝炸药在激光烧蚀下的发射光谱分布及瞬态温度测量[J]. 含能材料, 2018, 26(8): 671-676. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL201808011.htm

    GUO W C, ZHENG X X, ZHANG X, et al. Emission spectrum distribution and transient temperature measurement of aluminized explosives under laser ablation[J]. Chinese Journal of Energetic Materials, 2018, 26(8): 671-676 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL201808011.htm
    [20]
    VAPNIK V. The nature of statistical learning theory[M]. Berlin, Germany: Springer, 2000: 15-174.

Catalog

    Article views (10) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return