Advanced Search
HU Li, XI Feng. Plasmonic Fano resonance based on the graphene nanosheet array[J]. LASER TECHNOLOGY, 2023, 47(1): 19-24. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.003
Citation: HU Li, XI Feng. Plasmonic Fano resonance based on the graphene nanosheet array[J]. LASER TECHNOLOGY, 2023, 47(1): 19-24. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.003

Plasmonic Fano resonance based on the graphene nanosheet array

More Information
  • Received Date: December 27, 2021
  • Revised Date: January 25, 2022
  • Published Date: January 24, 2023
  • In order to obtain strong multiple Fano resonances, a metasurface composed of asymmetric nanosheet heterodimer was designed in the paper. Based on the finite element analysis method, the physical mechanism of Fano resonances was analyzed by the hybridization theory, and the different Fano responses resulted from different Fermi levels, structures parameters were analyzed. Results show that when the Fermi level of the graphene nanosheet increases, the Fano resonance peaks blue shift, and the intensity of graphene responses is enhanced, which causes that the local effect and absorption are enhanced accordingly. At the same time, with the increase of the asymmetry of the size and position of the nanosheet heterodimer, the asymmetry of Fano resonances also increases. The Fano resonances based on the simply graphene nanosheet heterodimer array are expected to be widely used in biosensor and related fields. The study provides theoretical reference for further experimental research.
  • [1]
    MAIER S A, ATWATER H A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures[J]. Journal of Applied Physics, 2005, 98(1): 011101. DOI: 10.1063/1.1951057
    [2]
    LEE H, LEE J H, JIN S M, et al. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering[J]. Nano Letters, 2013, 13(12): 6113-6121. DOI: 10.1021/nl4034297
    [3]
    TSAI W Y, HUANG J S, HUANG C B. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmo-nic archimedes spiral[J]. Nano Letters, 2014, 14(2): 547-552. DOI: 10.1021/nl403608a
    [4]
    PILO-PAIS M, WATSON A, DEMERS S, et al. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures[J]. Nano Letters, 2014, 14(4): 2099-2104. DOI: 10.1021/nl5003069
    [5]
    HWANG Y, HOPKINS B, WANG D, et al. Optical chirality from dark-field illumination of planar plasmonic nanostructures[J]. Laser & Photonics Reviews, 2017, 11(6): 1700216.
    [6]
    PANARO S, NAZIR A, LIBERALE C, et al. Dark to bright mode conversion on dipolar nanoantennas: A symmetry-breaking approach[J]. ACS Photonics, 2014, 1(4): 310-314. DOI: 10.1021/ph500044w
    [7]
    FAN J A, BAO K, WU C, et al. Fano-like interference in self-assembled plasmonic quadrumer clusters[J]. Nano Letters, 2010, 10(11): 4680-4685. DOI: 10.1021/nl1029732
    [8]
    LIU Sh D, YANG Y B, CHEN Zh H, et al. Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry[J]. The Journal of Physical Chemistry C, 2013, 117(27): 14218-14228. DOI: 10.1021/jp404575v
    [9]
    CHENG F, LIU H F, LI B H, et al. Tuning asymmetry parameter of Fano resonance of spoof surface plasmons by modes coupling[J]. A-pplied Physics Letters, 2012, 100(13): 131110. DOI: 10.1063/1.3698117
    [10]
    NGUYEN T K, LE T D, DANG P T, et al. Asymmetrically engineered metallic nanodisk clusters for plasmonic Fano resonance generation[J]. Journal of the Optical Society of America B, 2017, 34(3): 668-672. DOI: 10.1364/JOSAB.34.000668
    [11]
    ZHANG S, BAO K, HALAS N J, et al. Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 2011, 11(4): 1657-1663. DOI: 10.1021/nl200135r
    [12]
    HU L, HUANG Y, FANG L, et al. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality[J]. Scientific Reports, 2015, 5(10): 16069.
    [13]
    KOPPENS F H L, CHANG D E, de ABAJO F J G. Graphene plasmonics: A platform for strong light-matter interactions[J]. Nano Letters, 2011, 11(8): 3370-3377. DOI: 10.1021/nl201771h
    [14]
    GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758. DOI: 10.1038/nphoton.2012.262
    [15]
    JABLAN M, BULJAN H, SOLJAČIC' M. Plasmonics in graphene at infrared frequencies[J]. Physical Review, 2009, B80(24): 245435.
    [16]
    SHI C, HE X, PENG J, et al. Tunable terahertz hybrid graphene-metal patterns metamaterials[J]. Optics & Laser Technology, 2019, 114: 28-34.
    [17]
    ZHAO B, ZHANG Z M. Strong plasmonic coupling between graphene ribbon array and metal gratings[J]. ACS Photonics, 2015, 2(11): 1611-1618. DOI: 10.1021/acsphotonics.5b00410
    [18]
    EMANI N K, CHUNG T F, NI X, et al. Electrically tunable damping of plasmonic resonances with graphene[J]. Nano Letters, 2012, 12(10): 5202-5206. DOI: 10.1021/nl302322t
    [19]
    WANG X, MENG H, DENG S, et al. Hybrid metal graphene-based tunable plasmon-induced transparency in terahertz metasurface[J]. Nanomaterials, 2019, 9(3): 385. DOI: 10.3390/nano9030385
    [20]
    武继江, 高金霞. 金属-石墨烯光子晶体-金属结构的吸收特性[J]. 激光技术, 2019, 43(5): 614-618. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.005

    WU J J, GAO J X. Absorption characteristics of metal-graphene photonic crystal-metal structures[J]. Laser Technology, 2019, 43(5): 614-618 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2019.05.005
    [21]
    RODRIGO D, TITTL A, LIMAJ O, et al. Double-layer graphene for enhanced tunable infrared plasmonics[J]. Light: Science & Applications, 2017, 6(6): e16277.
    [22]
    BRAR V W, JANG M S, SHERROTT M, et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 13(6): 2541-2547. DOI: 10.1021/nl400601c
    [23]
    ASGARI S, GRANPAYEH N. Tunable mid-infrared refractive index sensor composed of asymmetric double graphene layer[J]. IEEE Sensors Journal, 2019, 19(14): 5686-5691. DOI: 10.1109/JSEN.2019.2906759
    [24]
    李从午, 卞立安. 基于F-P谐振与SPP共振的石墨烯双模吸收波体设计[J]. 激光技术, 2021, 45(4): 507-510. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.015

    LI C W, BIAN L A. Design of graphene double-mode absorber based on F-B resonance and SPP resonance[J]. Laser Technology, 2021, 45(4): 507-510 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.04.015
    [25]
    ZHOU C, LIU G, BAN G, et al. Tunable Fano resonator using multilayer graphene in the near-infrared region[J]. Applied Physics Letters, 2018, 112(10): 101904. DOI: 10.1063/1.5020576
    [26]
    WANG K, FAN W H, CHEN X, et al. Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale[J]. Optics Communications, 2019, 439(5): 61-65.
    [27]
    LIMA J R F, BARBOSA A L R, BEZERRA C G, et al. Tuning the Fano factor of graphene via Fermi velocity modulation[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 97(3): 105-110.
    [28]
    卞立安, 刘培国, 陈雨薇, 等. 石墨烯介质堆栈提高系统调控Fano共振能力[J]. 激光技术, 2018, 42(2): 187-191. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.009

    BIAN L A, LIU P G, CHEN Y W, et al. Improvement of system tunability for Fano resonance by graphene-dielectric stack[J]. Laser Technology, 2018, 42(2): 187-191 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2018.02.009

Catalog

    Article views (7) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return