Advanced Search
CHEN Haitao, LI Ting, GAO Zenghui. The evolution of C-dipole by incoherent superposition beams[J]. LASER TECHNOLOGY, 2022, 46(5): 691-696. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.019
Citation: CHEN Haitao, LI Ting, GAO Zenghui. The evolution of C-dipole by incoherent superposition beams[J]. LASER TECHNOLOGY, 2022, 46(5): 691-696. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.019

The evolution of C-dipole by incoherent superposition beams

More Information
  • Received Date: June 20, 2021
  • Revised Date: August 29, 2021
  • Published Date: September 24, 2022
  • The evolution of the incoherent superposition of two nonparaxial Gaussian beams carried a C-dipole was theoretically and numerically studied. The results show that the position and degree of polarization of two C-points may change with variation of the relevant parameters. The slope of the axis of the C-dipole increases monotonically with propagation. For the case of non-paraxial beams, creation and annihilation of C-dipoles occur as the beams propagate to 0.01zR and 10.39zR, respectively. At the plane z=zR, the creation and annihilation of C-points respectively occurs when the waist width increases to 0.222μm and 0.56μm. Besides, the creation and annihilation of C-points may take place with variation of the off-axis parameter and the wavelength of the host nonparaxial beams. The results would be useful for deeply understanding singular optics and seeking for their potential applications.
  • [1]
    INDEBETOUW G. Optical vortices and their propagation[J]. Journal of Modern Optics, 1993, 40(1): 73-87. DOI: 10.1080/09500349314550101
    [2]
    FREUND I. Saddle point wave fields[J]. Optics Communications, 1999, 163(4/6): 230-242.
    [3]
    ROUX F. Paraxial modal analysis technique for optical vortex trajectories[J]. Journal of the Optical Society of America, 2003, B20(6): 1575-1580.
    [4]
    ROUX F. Spatial evolution of the morphology of an optical vortex dipole[J]. Optics Communications, 2004, 236(4/6): 433-440.
    [5]
    YAN H W, LV B D. Transformation of the optical vortex dipole by an astigmatic lens[J]. Journal of Optics, 2009, A11(6): 065706.
    [6]
    GAO Z H, HE D, LV B D. Evolution of an optical vortex dipole diffracted by a half screen[J]. Acta Physica Sinica, 2011, 60(7): 074209 (in Chinese). DOI: 10.7498/aps.60.074209
    [7]
    BERRY M, DENNIS M. Polarization singularities in isotropic random vector waves[J]. Proceedings of the Royal Society, 2001, A457(1): 141-155.
    [8]
    RAJPUT R, SENTHILKUMARAN P, PAL S K. Phase singularities to polarization singularities[J]. International Journal of Optics, 2020, 1605 (1): 1-33.
    [9]
    PAL S K, SENTHILKUMARAN P. Hexagonal vector field of polarization singularities with a gradient basis structure[J]. Optics Letters, 2019, 44(8): 2093-2096. DOI: 10.1364/OL.44.002093
    [10]
    FREUND I. Polarization singularity indices in Gaussian laser beams[J]. Optics Communications, 2002, 201(4): 251-270.
    [11]
    YAN H W, LV B D. Evolution of emergent C-points, L-lines, and C-lines in free space[J]. Chinese Physics, 2012, B21(5): 054202.
    [12]
    HE D, GAO Z H, LIAN X X, et al. Composite stokes singularities in coherently and incoherently superimposed vector optical fields[J]. Optics Communications, 2012, 285(21/22): 4215-4222.
    [13]
    YE D H. Analysis of characteristics of Gaussian beam and its application[J]. Laser Technology, 2019, 43(1): 146-150 (in Chinese).
    [14]
    LI H M, ZUO J W, XU J, et al. Study on incoherent combining technology of pulsed laser beams[J]. Laser Technology, 2015, 39(2): 237-241 (in Chinese).
    [15]
    DUAN K L, WANG B Z, LV B D. Propagation of Hermite-Gaussian and Laguerre-Gaussian beams beyond the paraxial approximation[J]. Journal of the Optical Society of America, 2005, A22(9): 1976-80.
    [16]
    LI D, PENG X, PENG Y L, et al. Nonparaxial evolution of the Airy-Gaussian vortex beam in uniaxial crystal[J]. Journal of the Optical Society of America, 2017, B34(4): 891-898.
    [17]
    ZHANG J B, ZHOU K Z, LIANG M, et al. Nonparaxial propagation of the chirped Airy vortex beams in uniaxial crystal orthogonal to the optical axis[J]. Optics Express, 2018, 26(2): 1290-1304. DOI: 10.1364/OE.26.001290
    [18]
    SUN C, LV X, DENG D M, et al. Nonparaxial propagation of the radially polarized Airy-Gaussian beams with different initial launch angles in uniaxial crystals[J]. Optics Communications, 2019, 445(1): 147-157.
    [19]
    FREUND I, MOKHUN A I, SOSKIN M S, et al. Stokes singularity relations[J]. Optics Letters, 2002, 27(7): 545-547. DOI: 10.1364/OL.27.000545
    [20]
    FREUND I, SHVARTSMAN N. Wave-field phase singularities: The sign principle[J]. Physical Review, 1995, A50(6): 5164-5172.
    [21]
    YAN H W, LV B D. Spectral Stokes singularities of stochastic electromagnetic beams[J]. Optics Letters, 2009, 34(13): 1933-1935. DOI: 10.1364/OL.34.001933
    [22]
    FREUND I. Bichromatic optical Lissajous fields[J]. Optics Communications, 2003, 226(1/6): 351-376.
  • Cited by

    Periodical cited type(7)

    1. 江覃晴,吕桂贤,赵文彬,王斌,楚鹏浩,赵慧光. 基于DFB激光器的振动传感系统改进PGC解调算法. 半导体光电. 2024(02): 319-326 .
    2. 周朕蕊,张国强,邱宗甲,郭少朋,李群,邵剑,吴鹏,陆云才. 光纤法珀传感器的改进型相位生成载波法解调. 中国光学(中英文). 2024(02): 312-323 .
    3. 蔡冰涛,肖力敏,陈小宝. 基于线性插值的相位生成载波算法动态范围上限提高. 激光与光电子学进展. 2024(17): 151-159 .
    4. 苑龙祥,汪华平,王阳,刘敬之,曲全磊. 隔离开关合闸状态的非接触自动检测方法. 激光技术. 2024(05): 734-738 . 本站查看
    5. 王春梅,张总,王辉. 基于激光干涉的高分辨率精密位移测量研究. 激光杂志. 2023(04): 97-102 .
    6. 王宇,孙德龙,杨佳沛,梁斌,白清,刘昕,靳宝全. 基于多频相位生成载波的光纤振动传感技术研究. 传感技术学报. 2023(03): 367-372 .
    7. 孙抗,韩毓,何梦阳. 基于频分复用φ-OTDR的高频振动检测与解调. 传感器与微系统. 2023(07): 148-151 .

    Other cited types(6)

Catalog

    Article views (5) PDF downloads (5) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return