Citation: | TAN Yuan, GAN Xuehui, ZHANG Dongjian, LIU Xiangyu, LIAO He. Laser Doppler vibration signal processing based on wavelet denoising[J]. LASER TECHNOLOGY, 2022, 46(1): 129-133. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.014 |
[1] |
QIU S, LIU T, REN Y, et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect [J]. Optics Express, 2019, 27(17): 81-92.
|
[2] |
LI W. Research and application of velocity measurement system based on laser Doppler effect[D]. Nanjing: Nanjing University of Science and Technology, 2018: 10-61(in Chinese).
|
[3] |
PIERRE M, TRISTAN G, ARTHUR L, et al. The robotized laser doppler vibrometer: On the use of an industrial robot arm to perform 3-D full-field velocity measurements[J]. Optics and Lasers in Engineering, 2021, 137: 106363. DOI: 10.1016/j.optlaseng.2020.106363
|
[4] |
HASHEMINEJAD N, VUYE C, MARGARITIS A, et al. Identification of the viscoelastic properties of an asphalt mixture using a scanning laser Doppler vibrometer[J]. Materials and Structures, 2020, 53: 131. DOI: 10.1617/s11527-020-01567-9
|
[5] |
XU Y F, CHEN D M, ZHU W D. Modal parameter estimation using free response measured by a continuously scanning laser Doppler vibrometer system with application to structural damage identification[J]. Journal of Sound and Vibration, 2020, 485: 115536. DOI: 10.1016/j.jsv.2020.115536
|
[6] |
ABBAS S H, JANG J K, KIM D H, et al. Underwater vibration ana-lysis method for rotating propeller blades using laser Doppler vibrometer[J]. Optics and Lasers in Engineering, 2020, 132: 106133. DOI: 10.1016/j.optlaseng.2020.106133
|
[7] |
WANG T, SHEN Y H, YAO J Q. Research on laser radar echo signal denoising based on wavelet threshold method[J]. Laser Technology, 2019, 43(1): 63-68(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201901013.htm
|
[8] |
LI Sh Y. Improved wavelet threshold denoising method and its simulation using MATLAB[J]. Noise and Vibration Control, 2010, 30(2): 121-124(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZSZK201002035.htm
|
[9] |
LI J, ZENG L D, YUAN Sh Zh, et al. Research on the application of laser Doppler velocimeter in aircraft navigation[J]. Applied Laser, 2017, 37(6): 870-880(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YYJG201706018.htm
|
[10] |
BAI T, WU J, LI M L, et al. Application of DRNN in voice mea-surement system of laser Doppler vibrometer[J]. Laser Technology, 2019, 43(1): 109-114(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201901022.htm
|
[11] |
WANG H. Research on data processing and application of laser Doppler vibration measurement[D]. Hangzhou: Zhejiang University, 2018: 9-69(in Chinese).
|
[12] |
XIANG B P, ZHOU J, NI L, et al. Research on improved wavelet packet threshold denoising algorithm based on sample entropy[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(2): 410-415(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-ZDCS201902028.htm
|
[13] |
LIU M S, SUN Zh Y. Application of improved wavelet denoising method in low-frequency oscillation analysis of power system[J]. Journal of Physics Conference Series, 2020, 1633(1): 95-103. DOI: 10.1088/1742-6596/1633/1/012115/pdf
|
[14] |
HAO J J, LIU Y G, LIAO G, et al. A signal de-noising with improved wavelet threshold function[J]. Journal of Chongqing University of Technology(Natural Science Edition), 2019, 33(4): 93-97(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-CGGL201904015.htm
|
[15] |
ZHAO H B, ZHANG D, YANG J K, et al. Application of wavelet layered method for laser Doppler velocimetry signal[J]. Laser Technology, 2019, 43(1): 103-108(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201901021.htm
|
[16] |
CAO J J, HU L L, ZHAO R. Improved threshold de-noising method of fiber bragg grating sensor signal based on wavelet transform[J]. Chinese Journal of Sensors and Actuators, 2015, 28(4): 521-525(in Chinese).
|
[17] |
WU G W, WANG Ch M, BAO J D, et al. A wavelet threshold de-noising algorithm based on adaptive threshold function[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1340-1347(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYX201406011.htm
|
[18] |
AMIR A S, SEYYED M S. Decision tree-based method for optimum decomposition level determination in wavelet transform for noise reduction of partial discharge signals[J]. IET Science, Measurement & Technology, 2020, 14(1): 9-16. http://ieeexplore.ieee.org/document/8959481/
|
[19] |
ZHU J J, ZHANG Zh T, KUANG C L, et al. A reliable evaluation indicator of wavelet de-noising[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 688-694(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHCH201505022.htm
|
[20] |
TAO K, ZHU J J. A hybrid indicator for determining the best decomposition scale of wavelet denoising[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 749-755(in Chinese). http://www.researchgate.net/publication/288118601_A_hybrid_indicator_for_determining_the_best_decomposition_scale_of_wavelet_denoising
|
1. |
王萌. 基于小波去噪与语音分离的同声传译系统设计. 自动化与仪器仪表. 2025(01): 300-303+308 .
![]() | |
2. |
宾世杨,张振,唐俊杰,唐惜春. 基于机器学习的风电机组机械传动系统故障诊断研究. 机械与电子. 2024(01): 11-15 .
![]() | |
3. |
张西广,张龙飞,樊银亭. 基于光纤传感器的视频图像几何失真校正方法. 激光杂志. 2024(03): 150-155 .
![]() | |
4. |
张宏远,吕小彬,栗长俊,张勇. 滑坡位移时间序列的小波去噪效果评价分析. 测绘. 2024(01): 45-48 .
![]() | |
5. |
黄爱维,钱辉,牛华. 基于机器视觉技术的新能源汽车零部件表面缺陷检测. 激光杂志. 2024(06): 253-258 .
![]() | |
6. |
龚靖,伍波,万家硕,赵青虎,成家豪. 基于WDR联合FFT方法的脉冲相干测速精度研究. 激光技术. 2023(01): 92-97 .
![]() | |
7. |
樊祥洪,缑百勇,陈涛,何宇廷,崔荣洪,喻健. 柔性涡流阵列传感器孔边裂纹监测技术. 北京航空航天大学学报. 2023(03): 726-734 .
![]() | |
8. |
叶枫,侯昌伦. 光学多普勒无创血流测量技术的发展与现状. 激光技术. 2023(02): 205-213 .
![]() | |
9. |
李晋斐,赵冬青,王栋民,蔡聪聪,贾晓雪,张乐添. 一种基于组合赋权法的小波去噪质量评价方法. 北京航空航天大学学报. 2023(03): 718-725 .
![]() | |
10. |
裴慧华,韦小铃,甘运刚. 智能实验室全光纤防区型光栅周界入侵报警技术. 激光杂志. 2023(07): 239-244 .
![]() | |
11. |
闫绍栋,刘斌,李卫东,冉济荣,陈伟. 基于BP神经网络的油气管道振动检测系统. 化工设备与管道. 2023(05): 68-75 .
![]() | |
12. |
黎道花,周骅. 基于模糊阈值的小波函数去噪算法. 微处理机. 2022(04): 49-52 .
![]() | |
13. |
崔娟,钟聪,胡珍妮. 基于人工神经网络的激光陀螺零偏补偿方法研究. 自动化与仪器仪表. 2022(11): 7-10+16 .
![]() |