Advanced Search
TAN Yuan, GAN Xuehui, ZHANG Dongjian, LIU Xiangyu, LIAO He. Laser Doppler vibration signal processing based on wavelet denoising[J]. LASER TECHNOLOGY, 2022, 46(1): 129-133. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.014
Citation: TAN Yuan, GAN Xuehui, ZHANG Dongjian, LIU Xiangyu, LIAO He. Laser Doppler vibration signal processing based on wavelet denoising[J]. LASER TECHNOLOGY, 2022, 46(1): 129-133. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.014

Laser Doppler vibration signal processing based on wavelet denoising

More Information
  • Received Date: January 13, 2021
  • Revised Date: February 23, 2021
  • Published Date: January 24, 2022
  • In order to reduce the interference of noise in laser Doppler vibration signal, a laser Doppler vibration signal processing method based on improved wavelet de-noising was proposed. The scale was introduced into the threshold function, and a new evaluation index was established to select the optimal decomposition level. The improved algorithm was used to process the vibration signal. The improved algorithm and the original algorithm were adopted for processing the vibration signal. The simulation analysis and experimental verification were then carried out, and the vibration data before and after processing were obtained. The results indicate that the signal-to-noise ratio of simulated signals processed by the improved algorithm is 19.4% higher than that of the original soft and hard threshold algorithm. The measured tuning fork vibration frequency is 515Hz, which is consistent with the actual tuning fork frequency. This result is helpful to reduce the influence of noise in the laser Doppler vibration signal and obtain the vibration state.
  • [1]
    QIU S, LIU T, REN Y, et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect [J]. Optics Express, 2019, 27(17): 81-92.
    [2]
    LI W. Research and application of velocity measurement system based on laser Doppler effect[D]. Nanjing: Nanjing University of Science and Technology, 2018: 10-61(in Chinese).
    [3]
    PIERRE M, TRISTAN G, ARTHUR L, et al. The robotized laser doppler vibrometer: On the use of an industrial robot arm to perform 3-D full-field velocity measurements[J]. Optics and Lasers in Engineering, 2021, 137: 106363. DOI: 10.1016/j.optlaseng.2020.106363
    [4]
    HASHEMINEJAD N, VUYE C, MARGARITIS A, et al. Identification of the viscoelastic properties of an asphalt mixture using a scanning laser Doppler vibrometer[J]. Materials and Structures, 2020, 53: 131. DOI: 10.1617/s11527-020-01567-9
    [5]
    XU Y F, CHEN D M, ZHU W D. Modal parameter estimation using free response measured by a continuously scanning laser Doppler vibrometer system with application to structural damage identification[J]. Journal of Sound and Vibration, 2020, 485: 115536. DOI: 10.1016/j.jsv.2020.115536
    [6]
    ABBAS S H, JANG J K, KIM D H, et al. Underwater vibration ana-lysis method for rotating propeller blades using laser Doppler vibrometer[J]. Optics and Lasers in Engineering, 2020, 132: 106133. DOI: 10.1016/j.optlaseng.2020.106133
    [7]
    WANG T, SHEN Y H, YAO J Q. Research on laser radar echo signal denoising based on wavelet threshold method[J]. Laser Technology, 2019, 43(1): 63-68(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201901013.htm
    [8]
    LI Sh Y. Improved wavelet threshold denoising method and its simulation using MATLAB[J]. Noise and Vibration Control, 2010, 30(2): 121-124(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZSZK201002035.htm
    [9]
    LI J, ZENG L D, YUAN Sh Zh, et al. Research on the application of laser Doppler velocimeter in aircraft navigation[J]. Applied Laser, 2017, 37(6): 870-880(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YYJG201706018.htm
    [10]
    BAI T, WU J, LI M L, et al. Application of DRNN in voice mea-surement system of laser Doppler vibrometer[J]. Laser Technology, 2019, 43(1): 109-114(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201901022.htm
    [11]
    WANG H. Research on data processing and application of laser Doppler vibration measurement[D]. Hangzhou: Zhejiang University, 2018: 9-69(in Chinese).
    [12]
    XIANG B P, ZHOU J, NI L, et al. Research on improved wavelet packet threshold denoising algorithm based on sample entropy[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(2): 410-415(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-ZDCS201902028.htm
    [13]
    LIU M S, SUN Zh Y. Application of improved wavelet denoising method in low-frequency oscillation analysis of power system[J]. Journal of Physics Conference Series, 2020, 1633(1): 95-103. DOI: 10.1088/1742-6596/1633/1/012115/pdf
    [14]
    HAO J J, LIU Y G, LIAO G, et al. A signal de-noising with improved wavelet threshold function[J]. Journal of Chongqing University of Technology(Natural Science Edition), 2019, 33(4): 93-97(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-CGGL201904015.htm
    [15]
    ZHAO H B, ZHANG D, YANG J K, et al. Application of wavelet layered method for laser Doppler velocimetry signal[J]. Laser Technology, 2019, 43(1): 103-108(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201901021.htm
    [16]
    CAO J J, HU L L, ZHAO R. Improved threshold de-noising method of fiber bragg grating sensor signal based on wavelet transform[J]. Chinese Journal of Sensors and Actuators, 2015, 28(4): 521-525(in Chinese).
    [17]
    WU G W, WANG Ch M, BAO J D, et al. A wavelet threshold de-noising algorithm based on adaptive threshold function[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1340-1347(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYX201406011.htm
    [18]
    AMIR A S, SEYYED M S. Decision tree-based method for optimum decomposition level determination in wavelet transform for noise reduction of partial discharge signals[J]. IET Science, Measurement & Technology, 2020, 14(1): 9-16. http://ieeexplore.ieee.org/document/8959481/
    [19]
    ZHU J J, ZHANG Zh T, KUANG C L, et al. A reliable evaluation indicator of wavelet de-noising[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 688-694(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHCH201505022.htm
    [20]
    TAO K, ZHU J J. A hybrid indicator for determining the best decomposition scale of wavelet denoising[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 749-755(in Chinese). http://www.researchgate.net/publication/288118601_A_hybrid_indicator_for_determining_the_best_decomposition_scale_of_wavelet_denoising
  • Cited by

    Periodical cited type(13)

    1. 王萌. 基于小波去噪与语音分离的同声传译系统设计. 自动化与仪器仪表. 2025(01): 300-303+308 .
    2. 宾世杨,张振,唐俊杰,唐惜春. 基于机器学习的风电机组机械传动系统故障诊断研究. 机械与电子. 2024(01): 11-15 .
    3. 张西广,张龙飞,樊银亭. 基于光纤传感器的视频图像几何失真校正方法. 激光杂志. 2024(03): 150-155 .
    4. 张宏远,吕小彬,栗长俊,张勇. 滑坡位移时间序列的小波去噪效果评价分析. 测绘. 2024(01): 45-48 .
    5. 黄爱维,钱辉,牛华. 基于机器视觉技术的新能源汽车零部件表面缺陷检测. 激光杂志. 2024(06): 253-258 .
    6. 龚靖,伍波,万家硕,赵青虎,成家豪. 基于WDR联合FFT方法的脉冲相干测速精度研究. 激光技术. 2023(01): 92-97 . 本站查看
    7. 樊祥洪,缑百勇,陈涛,何宇廷,崔荣洪,喻健. 柔性涡流阵列传感器孔边裂纹监测技术. 北京航空航天大学学报. 2023(03): 726-734 .
    8. 叶枫,侯昌伦. 光学多普勒无创血流测量技术的发展与现状. 激光技术. 2023(02): 205-213 . 本站查看
    9. 李晋斐,赵冬青,王栋民,蔡聪聪,贾晓雪,张乐添. 一种基于组合赋权法的小波去噪质量评价方法. 北京航空航天大学学报. 2023(03): 718-725 .
    10. 裴慧华,韦小铃,甘运刚. 智能实验室全光纤防区型光栅周界入侵报警技术. 激光杂志. 2023(07): 239-244 .
    11. 闫绍栋,刘斌,李卫东,冉济荣,陈伟. 基于BP神经网络的油气管道振动检测系统. 化工设备与管道. 2023(05): 68-75 .
    12. 黎道花,周骅. 基于模糊阈值的小波函数去噪算法. 微处理机. 2022(04): 49-52 .
    13. 崔娟,钟聪,胡珍妮. 基于人工神经网络的激光陀螺零偏补偿方法研究. 自动化与仪器仪表. 2022(11): 7-10+16 .

    Other cited types(13)

Catalog

    Article views (13) PDF downloads (7) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return