Advanced Search
WU Jinhu, PENG Runwu, XIE Pengfei, TANG Junlong, XIE Haiqing. Micron focal switch in dispersion focused lens system[J]. LASER TECHNOLOGY, 2021, 45(3): 386-389. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.021
Citation: WU Jinhu, PENG Runwu, XIE Pengfei, TANG Junlong, XIE Haiqing. Micron focal switch in dispersion focused lens system[J]. LASER TECHNOLOGY, 2021, 45(3): 386-389. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.021

Micron focal switch in dispersion focused lens system

More Information
  • Received Date: July 12, 2020
  • Revised Date: July 28, 2020
  • Published Date: May 24, 2021
  • In order to know micron focal switch of polychromatic TEM22 mode Hermite-Gaussian (HG) beams passing through an apertured dispersion lens system, numerical calculation examples were used to study the beam's intensity distributions. The data of the axial intensity distributions were achieved. It is found that variation of the bandwidth results in change of two maximal intensities of TEM22 mode (HG) beams and thus position of the principle maximal intensity shifts rapidly. When relative bandwidth γ is 0.231 and Fresnel number Fw is 100, the position varies 2.5μm and the phenomenon of micron focal switch presents. The bandwidth and Fresnel number are important factors that induce the micron focal switch. A narrow bandwidth is enough to induce the focal switch of TEM22 mode (HG) beams in the system with large Fresnel number whereas a broad bandwidth is required in the system with small Fresnel number. Results in this paper help the design and manufacture of micro and nano optical devices in optical communication technique.
  • [1]
    LI Y J. Focal shift and focal switch in dual-focus systems[J]. Journal of the Optical Society of America, 1997, A14(6): 1297-1304. http://d.wanfangdata.com.cn/periodical/6015149f0eca08b131d2897642828962
    [2]
    MARTÍNE-CORRAL M, CABALLERO M T, MUÑOZ-ESCRIVÁ L, et al. Focal-shift formula in apodized non-telecentric focusing systems[J]. Optics Letters, 2001, 26(19): 1501-1504. DOI: 10.1364/OL.26.001501
    [3]
    LU B D, PENG R W. Focal shift and focal switch in aperture-lens separate systems[J]. Journal of Optics, 2002, A4(6): 601-605. http://www.ingentaconnect.com/content/iop/jopta/2002/00000004/00000006/art00303
    [4]
    KEIR C N, ELIO A A, STEVEN M B. Measurement of the effective focal shift in an optical trap[J]. Optics Letters, 2005, 30(22): 1318-1320. http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-11-1318
    [5]
    DU X Y, ZHAO D M. Focal shift and focal switch of focused truncated elliptical Gaussian beams[J]. Optics Communications, 2007, 275 (2): 301-304. DOI: 10.1016/j.optcom.2007.03.047
    [6]
    HERNANDEZ-ARANDA R I, GUTIERREZ-VEGA J C. Focal shift in vector Mathieu-Gauss beams. Optics Express, 2008, 16 (8): 5838-5848. DOI: 10.1364/OE.16.005838
    [7]
    WANG F, CAI Y J, KOROTKOVA O. Experimental observation of focal shifts in focused partially coherent beams[J]. Optics Communications, 2009, 282(17): 3408-3413. DOI: 10.1016/j.optcom.2009.05.043
    [8]
    TANG B, WEN W. Focal shift and focal switch of flat-topped Mathieu-Gaussian beams passing through an apertured lens system[J]. Optics Communications, 2009, 282 (12): 2281-2285. DOI: 10.1016/j.optcom.2008.12.033
    [9]
    MU G Q, WANG L, WANG X Q. Focal switch of cosine-squared Gaussian beams passing through an astigmatic lens[J]. Laser Technology, 2011, 35(4): 562-565 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JGJS201104032.htm
    [10]
    PENG R W, LI L, LI Y J, et al. Positive and negative focal shifts of an apertured supercontinuum laser with rectangular spectrum[J]. Optics Communications, 2013, 298/299(1): 34-36. http://www.sciencedirect.com/science/article/pii/S0030401813002551
    [11]
    MA R, LI Y T, LIU Y M, et al. Focal shift of nano-optical lens a-ffected by periodic resonance with substrate[J]. IEEE Photonics Journal, 2016, 8(6): 4502309. http://ieeexplore.ieee.org/xpls/icp.jsp?reload=true&arnumber=7593321
    [12]
    ZHANG B Y, PENG R W, ZHANG W. Bandwidth-induced focal switch in broadband laser with rectangular spectrum[J]. Laser Technology, 2017, 41(1): 138-140(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201701028.htm
    [13]
    YU Y T, ZAPPE H. Theory and implementation of focal shift of plasmonic lenses[J]. Optics Letters, 2012, 37(9): 1592-1594. DOI: 10.1364/OL.37.001592
    [14]
    GAO Y, LIU J L, ZHANG X R, et al. Analysis of focal-shift effect in planar metallic nanoslit lenses[J]. Optics Express, 2012, 20(2): 1320-1329. DOI: 10.1364/OE.20.001320
    [15]
    HE Sh M, WANG Zh H, LIU Q F, et al. Study of focal shift effect in planar GaN high contrast grating lenses[J]. Optics Express, 2015, 23(23): 29360-29368. DOI: 10.1364/OE.23.029360
    [16]
    PENG Ch B. Observation of focal point shift in solid immersion mi-rror[J]. Optics Express, 2015, 23(2): 1498-1504. DOI: 10.1364/OE.23.001498
    [17]
    HE S M, WANG Z H, LIU Q F. Positive focal shift of gallium nitride high contrast grating focusing reflectors[J]. Materials Research Express, 2016, 3(9): 095901. DOI: 10.1088/2053-1591/3/9/095901
    [18]
    JIA Y X. Focal shift in metasurface based lenses[J]. Optics Express, 2018, 26(7): 8001-8015. DOI: 10.1364/OE.26.008001
    [19]
    MALITSON I H. Interspecimen comparison of the refractive index of fused silica[J]. Journal of the Optical Society of America, 1965, 55(10): 1205-1209. DOI: 10.1364/JOSA.55.001205
  • Cited by

    Periodical cited type(7)

    1. 胡泽雄,游利兵,寸超,王宏伟,范军,王琪,张艳琳,方晓东. 准分子激光低抖动延时同步系统. 量子电子学报. 2023(01): 69-78 .
    2. 龚玮玮,张进,张丽伟. 基于嵌入式技术的准分子激光器智能控制系统. 激光杂志. 2021(10): 181-185 .
    3. 王晨,梁勖,林颖,方晓东. MOPA结构准分子激光同步触发设计. 红外与激光工程. 2021(11): 165-170 .
    4. 朱志坚,薛竣文,王玉珂,孙鲁,苏秉华. 基于MOPA结构的1064nm单频光纤激光器. 激光技术. 2019(06): 800-803 . 本站查看
    5. 王景景,符志军. 激光陀螺仪的机械抖动控制技术分析和研究. 激光杂志. 2019(12): 118-122 .
    6. 谢正兰,万川梅. 单向链式网络的激光同步技术研究. 激光杂志. 2018(03): 146-150 .
    7. 徐学红,栗科峰. 激光接收器的抖动抑制优化控制方法. 激光杂志. 2017(06): 136-139 .

    Other cited types(2)

Catalog

    Article views (6) PDF downloads (2) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return