Advanced Search
WANG Guojun, HUANG Yaxin, ZHAO Qilin, ZHANG Dongdong. Study on the robustness of spot center based on adaptive region[J]. LASER TECHNOLOGY, 2020, 44(5): 616-622. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.015
Citation: WANG Guojun, HUANG Yaxin, ZHAO Qilin, ZHANG Dongdong. Study on the robustness of spot center based on adaptive region[J]. LASER TECHNOLOGY, 2020, 44(5): 616-622. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.015

Study on the robustness of spot center based on adaptive region

More Information
  • Received Date: September 19, 2019
  • Revised Date: October 13, 2019
  • Published Date: September 24, 2020
  • During the detection of laser spot center, in order to improve the calculation efficiency under the premise of ensuring the location accuracy of the spot center, an improved template matching algorithm was used for theoretical analysis and experimental verification. The results show that: In the case of no exposure, the average calculation time of the adaptive region of interest (ROI) is 897s, while the average calculation time of the traditional template matching algorithm is 3388s. In the presence of exposure, the average calculation time of the adaptive ROI is 921s, and the average calculation time of the traditional template matching algorithm is 3389s. The improved adaptive algorithm has achieved excellent performance in the experimental test of laser spot positioning, which shows that it can improve the calculation efficiency under the premise of ensuring accuracy.
  • [1]
    ZHOU S, LI M Zh, JIANG J, et al. Solid-state mid-infrared laser technology research progress[J]. Infrared Technology, 2019, 41(5):391-399(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-HWJS201905001.htm
    [2]
    WANG X F, YANG H J, ZHANG G, et al. Measurement of refractive indices of GdTaO4 crystal by the auto-collimation method[J]. Acta Physica Sinica, 2016, 65(8):087801(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201608040
    [3]
    LIANG Y L, DUAN F J. Light bar centerline extraction method based on density clustering[J]. Laser Technology, 2020, 44(4):459-465(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs202004011
    [4]
    HUANG L F, LIU G D, ZHANG Ch, et al. Laser stripe center extraction algorithm based on gray weight model[J]. Laser Technology, 2020, 44(2):190-195(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs202002009
    [5]
    WANG Y Y, GAO Y Q, ZHU H D, et al. Auto-alignment in four-pass amplifier with wavefront correction system[J]. Acta Physica Sinica, 2013, 62(5):055201(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201305035
    [6]
    DING Zh Y, YE L, SHEN X H. Detection method of parallelism of optic axes between laser and visible optical systems[J]. Infrared and Laser Engineering, 2008, 37(5):890-893(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc200805033
    [7]
    KRSTINIĆ D, SKELIN A K, MILATIĆ I. Laser spot tracking based on modified circular Hough transform and motion pattern analysis[J]. Sensors, 2014, 14(11): 20112-20133. DOI: 10.3390/s141120112
    [8]
    ZHOU P, WANG X Q, HUANG Q Y, et al. Laser spot center detection based on improved circled fitting algorithm[C]//IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC).New York, USA: IEEE, 2018: 316-319.
    [9]
    LI Y H. Algorithm of locating the sphere center imaging point based on novel edge model and Zernike moments for vision measurement[J]. Journal of Modern Optics, 2019, 66(2): 218-227. DOI: 10.1080/09500340.2018.1515377
    [10]
    ZHENG J. Image segmentation framework based on optimal multi-method fusion[J]. IET Image Processing, 2018, 13(1): 186-195. http://ieeexplore.ieee.org/document/8574080/
    [11]
    TIMCHENKO L I, POPLAVSKYY A, PETROVSKYI N, et al. Method of reference tunnel formation for improving forecast results of the laser beams spot images behavior[J]. Optical Engineering, 2011, 50(11): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=92dd5d7b6d2122f2195e8e70af4dab77
    [12]
    WU Sh X, FAN T Q, DONG Ch, et al. RDS-denoiser: A detail-preserving convolutional neural network for image denoising[C]//2018 IEEE International Conference on Cyborg and Bionic Systems (CBS).New York, USA: IEEE, 2018: 127-132.
    [13]
    SHROFF A D, PATIDAR K, KUSHWAH R. A survey and analysis based on image denoising method[J]. International Journal of Advanced Technology and Engineering Exploration, 2018, 5(44): 182-186. DOI: 10.19101/IJATEE.2018.543020
    [14]
    FENG D M, FENG M Q. Experimental validation of cost-effective vision-based structural health monitoring[J]. Mechanical Systems and Signal Processing, 2017, 88: 199-211. DOI: 10.1016/j.ymssp.2016.11.021
    [15]
    ZHU J, XU Z, FU D, et al. Laser spot center detection and compa-rison test[J]. Photonic Sensors, 2019, 9(1): 49-52. DOI: 10.1007/s13320-018-0432-x
    [16]
    CHEN Z L, ZENG Z Y, SHEN H L, et al. DN-GAN: Denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images[J/OL]. (2019-09-10)[2019-10-11]. http://www.sciencedirect.com/science/article/pii/S1746809419302137.
    [17]
    ZHAO Y, TAO Zh N. Detection apparatus and method for noise intensity and coherent optical receiver: US15/664420[P]. 2018-03-08.
    [18]
    LUO L X, FENG M Q, WU Zh Y. Robust vision sensor for multi-point displacement monitoring of bridges in the field[J]. Engineering Structures, 2018, 163: 255-266. DOI: 10.1016/j.engstruct.2018.02.014
  • Cited by

    Periodical cited type(2)

    1. 朱娴. 基于光纤光栅的光电检测系统研究. 激光杂志. 2019(05): 58-62 .
    2. 景月娟, 张晓丽. 基于DSP的光电信号精密检测系统设计. 激光杂志. 2019(09): 159-162 .

    Other cited types(0)

Catalog

    Article views (8) PDF downloads (4) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return