Advanced Search
ZHANG Chunyu, CHEN Xianshuai, SUN Xuetong. The development situation of metal 3-D printing manufacturing technology[J]. LASER TECHNOLOGY, 2020, 44(3): 393-398. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.022
Citation: ZHANG Chunyu, CHEN Xianshuai, SUN Xuetong. The development situation of metal 3-D printing manufacturing technology[J]. LASER TECHNOLOGY, 2020, 44(3): 393-398. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.022

The development situation of metal 3-D printing manufacturing technology

More Information
  • Received Date: August 11, 2019
  • Revised Date: September 08, 2019
  • Published Date: May 24, 2020
  • The development of metal 3-D printing technology was summarized in this paper. The advantages and disadvantages of various types of 3-D printing technologies were illustrated, main technical features of several typical 3-D printing technologies were discussed though their development history and working principles. On this basis, the future research direction of selective laser melting was put forward: The selective laser melting has a wider range of applications. The metal 3-D printing technology could be improved by promoting material performance, equipment function, structure design, and manufacturing technology. With the development of metal 3-D printing technology, the technologies will be more widely available in metalworking industries, and become the one of most important technology and strategic manufacturing technology.
  • [1]
    LU B H, LI D Ch. Development of the additive manufacturing (3-D printing) technology[J]. Machine Building & Automation, 2013, 42(4):1-4 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-ZZHD201304001.htm
    [2]
    SHEN Q, YU S, NIU J L, et al. Selective laser melting of magnesium-based materials: A review[J]. Materials Reports, 2019, 33(1):278-282(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/cldb2019z1059
    [3]
    TIAN J, HUANG Zh H, QI W J, et al. Research progress on selective laser melting of metal[J]. Materials Reports, 2017, 31(29):90-101(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-CLDB2017S1020.htm
    [4]
    WOHLERS T.Additive manufacturing and 3-D printing state of industry[R].Auckland, New Zealand: Wohlers Reports, 2012:90-130.
    [5]
    ADAM T C, PAUL R C. Selective laser melting of high aspect ratio 3-D nickel-titanium structures two way trained for MEMS applications[J].International Journal of Mechanics and Design, 2008, 38(4):181-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=817325efab43fa657181706a22ecc8ca
    [6]
    BANDYYOPADHYAY A, KRISHNA B V K, XUE W C, et al. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants[J]. Journal of Materials Science: Materials in Medicine, 2009, 48(20):29-34. http://www.ncbi.nlm.nih.gov/pubmed/18521725
    [7]
    YADROITSEY I. SHISHKOYSKY I, BERTRAND P. Manufacturing of fine-structured 3-D porous filter elements by selective laser melting[J]. Applied Surface Science, 2009, 58(255):5523-5527. https://www.sciencedirect.com/science/article/abs/pii/S0169433208017893
    [8]
    DAY R, KOP A. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting[J]. Rapid Prototyping Journal, 2008, 14(5):300-304. DOI: 10.1108/13552540810907974
    [9]
    QIAO G. Generalized additive manufacturing based on welding/joining technologies[J]. The Paton Welding Journal, 2013, 67(10/11):33-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9619cff825e3ea1f464f97273d46130
    [10]
    ZENG G, HAN Zh Y, LIANG Sh J, et al. The applications and progress of manufacturing of metal parts by printing technology[J]. Materials China, 2014, 33(6):376-382(in Chinese). http://cn.bing.com/academic/profile?id=8d7f85f0d020e333cd68f550d541c06a&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    KRUTH J P, FROYEN L. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/3):616-622. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eb71740256fd6c3dc6a46a449a64edc2
    [12]
    SIMEHI A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features[J]. Materials Science and Engineering A, 2006, 428(1/2):148-158. DOI: 10.1016-j.msea.2006.04.117/
    [13]
    ALBERTO J C, SALAZAZ A, RODRIGUE J. Effect of the orientation on the fatigue crack growth of polyamide 12 manufactured by selective laser sintering[J]. Rapid Prototyping Journal, 2019, 124(16):820-829. http://cn.bing.com/academic/profile?id=e8a9353062fd00ebf87baa020fa554dc&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    MEIER H, HABERLAND C. Experimental studies on selective laser melting of metallic parts[J]. Material Wissenschaft und Werkstofftechnik, 2008, 39(9):665-670. DOI: 10.1002/mawe.200800327
    [15]
    ABE F, SANTOS E C, KITAMURA Y, et al. Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process[J]. Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science. 2003, 217(l):119-126. DOI: 10.1243/095440603762554668
    [16]
    RAFIEAZAD M, CHATTERJEE A, NASIRI A M. Effects of recycled powder on solidification defects, microstructure, and corrosion properties of DMLS fabricated AlSi10Mg[J]. The Journal of the Minerals, Metals & Materials Society, 2019, 132(71):3241-3252. DOI: 10.1007/s11837-019-03552-2
    [17]
    WANG Y, BERGSTROM J, BURMAN C, et al. Characterization of an iron-based laser sintered material[J]. Journal of Materials Processing Technology, 2006, 172(l):77-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c5c3c555c3728bf6a3e82119967b24c
    [18]
    TRAINI T, MANGANO C, SAMMONS R L, et al. Direct laser metal sintering as a new approach to fabrication of an isoelectric functionally graded material for manufacture of Porous titanium dental implants[J]. Dental Materials, 2008, 24(11):1525-1533. DOI: 10.1016/j.dental.2008.03.029
    [19]
    FRANCHITTI S, BORRELLI R. Wettability behavior of Ti6Al4V electron beam melted surfaces[J]. Key Engineering Materials, 2019, 45(12):116-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/KEM.813.116
    [20]
    KEATON F, RYAN S, RODNEY P D. Assessing the accuracy of casting and additive manufacturing techniques for fabrication of a complete palatal coverage metal framework[J]. Journal of Prosthodontics: Official Journal of the American College of Prosthodontists, 2019, 36(15):811-817. DOI: 10.1111/jopr.13076
    [21]
    XIE J W, FOX P, ONEILL W, et al. Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels[J]. Journal of Materials Processing Technology, 2005, 170(18):516-523. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff4f6bc580c63d6c6668b337b74a5060
    [22]
    MUMTAZ K A, ERASENTHIRAN P, HOPKINSON N. High density selective laser melting of Waspaloy(R)[J]. Journal of Materials Processing Technology, 2008, 195(l/3):77-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC024967524
    [23]
    MAHARUBIN S, HU Y B, SOORIYAARACHCHI D, et al. Laser engineered net shaping of antimicrobial and biocompatible titanium-silver alloys [J]. Materials Science & Engineering, 2019, 46(4):980-983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fadc2a32de17beac20be1c55218c1444
    [24]
    SERCOMBE T, JONES N, DAY R, et al. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting[J].Rapid Prototyping Journal, 2008, 14(5):300-304. DOI: 10.1108/13552540810907974
    [25]
    MURR L E, QUINONES S A, GALONSKA S. Microstructure and mechanical behavior of Ti-6AI-4V produced by rapid-layer manufacturing for biomedical applications[J]. Journal of The Mechanical Behavior of Biomedical Materials, 2008, 18(6):192-203. https://www.academia.edu/8430640/Microstructure_and_mechanical_behavior_of_Ti_6Al_4V_produced_by_rapid-layer_manufacturing_for_biomedical_applications
    [26]
    THJJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6AI-4V[J]. Acta Material, 2010, 58(8):3303-3312. https://www.sciencedirect.com/science/article/abs/pii/S135964541000090X
    [27]
    TANG Y, LOU H T, WONG Y S, et al. Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts[J]. Journal of Materials Processing Technology, 2003, 140(62):368-372. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe0b65b9f9a96e41c0ddea87a750519c
    [28]
    LI R D. Research on the key basic issues in selective laser melting of metallic power[D]. Wuhan: Huazhong University of Science and Technology, 2010: 17-74(in Chinese).
    [29]
    CHEN Sh, WU J M, SHI Y Sh. General introduction of 3-D printing materials and their applications[J]. Physics, 2018, 47(11):715-724(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-WLZZ201811005.htm
    [30]
    WANG J F, YUAN J T, WANG Zh H, et al.Deformation and residual stress of TC4 titanium alloy thin-wall parts by selective laser melting[J].Laser Technology, 2019, 43(3):411-415(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201903023
    [31]
    ZHANG C Y, CHEN X S. The development situation of material based on dental implant [J]. Advanced Materials Research, 2013, 12(26): 541-548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.699.541
    [32]
    LIU P L, SUN W L, WANG K D, et al.Effect of scanning speed on the properties of laser cladding nickel-based alloy coating[J].Laser Technology, 2018, 42(6):845-848(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsrcl201704038
    [33]
    GU D D, SHEN Y F. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder[J]. Journal of Alloys and Compounds, 2007, 432(1/2):163-166. DOI: 10.1016-j.jallcom.2006.06.011/
    [34]
    NIKOLAK K T, SERGEI E M, IGOR A Y, et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal, 2004, 312(10):78-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e50a5132ec79ef9f63e037383e0903ee
    [35]
    SUN Z, TAN X, SHU B T, et al. Selective laser melting of stainless steel 316L with low porosity and high build rates[J]. Materials & Design, 2016, 104(35):197-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81b7d4283d5c821d0fd8e2ebd817986b
    [36]
    ZHANG K, LIU T T, ZHANG Ch D, et al. Study on deformation behavior in selective laser melting based on the analysis of the melt pool data [J]. Chinese Journal of Lasers, 2015, 42(9):0903007(in Chinese). DOI: 10.3788/CJL201542.0903007
    [37]
    AN Ch, ZHANG Y M, ZHANG J S, et al. Experimental study on density and pore defects of cobalt-chromium alloy fabricated by selective laser melting[J]. Applied Laser, 2018, 38(5):730-737(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyjg201805005
    [38]
    LIANG X K, DONG P. Microstructure and mechanical properties of selective laser melting Ti-6Al-4V alloy[J].Applied Laser, 2014, 34(2):25-28 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gtft201904009
    [39]
    YAO H S, SHI Y Sh, ZHANG W X, et al. Numerical simulation of the temperature field in selective laser melting[J]. Applied Laser, 2007, 27(6):456-460 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rkxxb-e201902021
    [40]
    YANG Y Q, LUO Z Y, SU X B, et al. Study on process and effective factors of stainless steel thin-wall parts manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(1):0103001(in Chinese). DOI: 10.3788/CJL201138.0103001
    [41]
    LIU Y, ZHANG J, PANG Z, et al.Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method[J].Optics & Lasers in Engineering, 2018, 103:34-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bb90a93b29767da73ed8ccf834d3ae73
    [42]
    LI Zh H, XU R J, ZHENG Zh G, et al.The influence of scan length on fabricating thin-walled components in selective laser melting[J].International Journal of Machine Tools & Manufacture, 2017, 126:1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35e861bd7bc62ffdf2f0cd2ea7a4bd49
  • Related Articles

    [1]JIA Na, YU Benjun, ZHANG Chunpu, WANG Chunxin, LIU Jiuqing. Optimization of single-pass forming parameters for selective laser melting WC-12Co[J]. LASER TECHNOLOGY, 2025, 49(1): 113-120. DOI: 10.7510/jgjs.issn.1001-3806.2025.01.018
    [2]CHEN Jintang, GUO Ziying, WANG Chenyong, TAN Chaolin, HU Yingning, LIU Jianye. Research status of Ti-6Al-4V manufactured by selective laser melting for medical device applications[J]. LASER TECHNOLOGY, 2020, 44(3): 288-298. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.004
    [3]WANG Junfei, YUAN Juntang, WANG Zhenhua, ZHANG Bo, LIU Jiaxin. Deformation and residual stress of TC4 titanium alloy thin-wall parts by selective laser melting[J]. LASER TECHNOLOGY, 2019, 43(3): 411-416. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.023
    [4]LEI Kaiyun, QIN Xunpeng, XU Yun, LIU Huaming, HU Zeqi. Study on laser 3-D printing process of automotive engine connecting rods[J]. LASER TECHNOLOGY, 2018, 42(1): 136-140. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.027
    [5]ZHANG Xiaogang, LI Zongyi, LIU Yan, ZHANG Hao. Study on dimensional accuracy of pure copper forming parts by laser selective melting[J]. LASER TECHNOLOGY, 2017, 41(6): 852-857. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.017
    [6]WANG Mengyao, ZHU Haihong, QI Ting, ZHANG Hu, ZENG Xiaoyan. Selective laser melting Al-Si aluminum alloy and the crack formation mechanism[J]. LASER TECHNOLOGY, 2016, 40(2): 219-222. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.014
    [7]LIU Rui-cheng, YANG Yong-qiang, WANG Di. Research of upper surface roughness of metal parts fabricated by selective laser melting[J]. LASER TECHNOLOGY, 2013, 37(4): 425-430. DOI: 10.7510/jgjs.issn.1001-3806.2013.04.003
    [8]LU Jian-bin, YANG Yong-qiang, WANG Di, LUO Zi-yi, SU Xu-bin. Analysis of affecting factors of overhanging surface quality by selective laser melting[J]. LASER TECHNOLOGY, 2011, 35(2): 148-151. DOI: 10.3969/j.issn.1001-3806.2011.02.002
    [9]SUN Ting-ting, YANG Yong-qiang, SU Xu-bin, GUO Ming-hua. Research of densification of 316L stainless steel powder in selective laser melting process[J]. LASER TECHNOLOGY, 2010, 34(4): 443-446. DOI: 10.3969/j.issn.1001-3806.2010.04.004
    [10]CHENG Da-wei, YANG Yong-qiang, WANG Chi-lin, WU Wei-hui. Selective laser melting of CuP alloy powder[J]. LASER TECHNOLOGY, 2009, 33(1): 63-66.
  • Cited by

    Periodical cited type(7)

    1. 刘凯,王慧琴,吴萌,相建凯,卢英. 基于提升小波的古铜镜X光图像融合方法研究. 激光技术. 2020(01): 113-118 . 本站查看
    2. 王艳,杨艳春,党建武,王阳萍. 非下采样Contourlet变换域内结合模糊逻辑和自适应脉冲耦合神经网络的图像融合. 激光与光电子学进展. 2019(10): 121-129 .
    3. 陈智勇,孙嘉. 区域分割下序列红外图像智能融合算法研究. 激光杂志. 2019(06): 74-77 .
    4. 蔡怀宇,卓励然,朱攀,黄战华,武晓宇. 基于非下采样轮廓波变换和直觉模糊集的红外与可见光图像融合. 光子学报. 2018(06): 225-234 .
    5. 胡文,王小华,朱怀毅. LNSST域灰度突变度的红外与可见光图像融合. 红外技术. 2018(06): 563-568 .
    6. 高晶,陈晓臻. 基于AR动态图像的人物动作捕捉技术研究. 现代电子技术. 2018(08): 144-146+150 .
    7. 郭佩瑜,张宝华. 基于引导滤波和模糊算法的红外背景抑制算法. 激光技术. 2018(06): 854-858 . 本站查看

    Other cited types(6)

Catalog

    Article views (10) PDF downloads (4) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return