Citation: | ZHANG Chunyu, CHEN Xianshuai, SUN Xuetong. The development situation of metal 3-D printing manufacturing technology[J]. LASER TECHNOLOGY, 2020, 44(3): 393-398. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.022 |
[1] |
LU B H, LI D Ch. Development of the additive manufacturing (3-D printing) technology[J]. Machine Building & Automation, 2013, 42(4):1-4 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-ZZHD201304001.htm
|
[2] |
SHEN Q, YU S, NIU J L, et al. Selective laser melting of magnesium-based materials: A review[J]. Materials Reports, 2019, 33(1):278-282(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/cldb2019z1059
|
[3] |
TIAN J, HUANG Zh H, QI W J, et al. Research progress on selective laser melting of metal[J]. Materials Reports, 2017, 31(29):90-101(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-CLDB2017S1020.htm
|
[4] |
WOHLERS T.Additive manufacturing and 3-D printing state of industry[R].Auckland, New Zealand: Wohlers Reports, 2012:90-130.
|
[5] |
ADAM T C, PAUL R C. Selective laser melting of high aspect ratio 3-D nickel-titanium structures two way trained for MEMS applications[J].International Journal of Mechanics and Design, 2008, 38(4):181-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=817325efab43fa657181706a22ecc8ca
|
[6] |
BANDYYOPADHYAY A, KRISHNA B V K, XUE W C, et al. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants[J]. Journal of Materials Science: Materials in Medicine, 2009, 48(20):29-34. http://www.ncbi.nlm.nih.gov/pubmed/18521725
|
[7] |
YADROITSEY I. SHISHKOYSKY I, BERTRAND P. Manufacturing of fine-structured 3-D porous filter elements by selective laser melting[J]. Applied Surface Science, 2009, 58(255):5523-5527. https://www.sciencedirect.com/science/article/abs/pii/S0169433208017893
|
[8] |
DAY R, KOP A. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting[J]. Rapid Prototyping Journal, 2008, 14(5):300-304. DOI: 10.1108/13552540810907974
|
[9] |
QIAO G. Generalized additive manufacturing based on welding/joining technologies[J]. The Paton Welding Journal, 2013, 67(10/11):33-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9619cff825e3ea1f464f97273d46130
|
[10] |
ZENG G, HAN Zh Y, LIANG Sh J, et al. The applications and progress of manufacturing of metal parts by printing technology[J]. Materials China, 2014, 33(6):376-382(in Chinese). http://cn.bing.com/academic/profile?id=8d7f85f0d020e333cd68f550d541c06a&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
KRUTH J P, FROYEN L. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/3):616-622. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eb71740256fd6c3dc6a46a449a64edc2
|
[12] |
SIMEHI A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features[J]. Materials Science and Engineering A, 2006, 428(1/2):148-158. DOI: 10.1016-j.msea.2006.04.117/
|
[13] |
ALBERTO J C, SALAZAZ A, RODRIGUE J. Effect of the orientation on the fatigue crack growth of polyamide 12 manufactured by selective laser sintering[J]. Rapid Prototyping Journal, 2019, 124(16):820-829. http://cn.bing.com/academic/profile?id=e8a9353062fd00ebf87baa020fa554dc&encoded=0&v=paper_preview&mkt=zh-cn
|
[14] |
MEIER H, HABERLAND C. Experimental studies on selective laser melting of metallic parts[J]. Material Wissenschaft und Werkstofftechnik, 2008, 39(9):665-670. DOI: 10.1002/mawe.200800327
|
[15] |
ABE F, SANTOS E C, KITAMURA Y, et al. Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process[J]. Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science. 2003, 217(l):119-126. DOI: 10.1243/095440603762554668
|
[16] |
RAFIEAZAD M, CHATTERJEE A, NASIRI A M. Effects of recycled powder on solidification defects, microstructure, and corrosion properties of DMLS fabricated AlSi10Mg[J]. The Journal of the Minerals, Metals & Materials Society, 2019, 132(71):3241-3252. DOI: 10.1007/s11837-019-03552-2
|
[17] |
WANG Y, BERGSTROM J, BURMAN C, et al. Characterization of an iron-based laser sintered material[J]. Journal of Materials Processing Technology, 2006, 172(l):77-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c5c3c555c3728bf6a3e82119967b24c
|
[18] |
TRAINI T, MANGANO C, SAMMONS R L, et al. Direct laser metal sintering as a new approach to fabrication of an isoelectric functionally graded material for manufacture of Porous titanium dental implants[J]. Dental Materials, 2008, 24(11):1525-1533. DOI: 10.1016/j.dental.2008.03.029
|
[19] |
FRANCHITTI S, BORRELLI R. Wettability behavior of Ti6Al4V electron beam melted surfaces[J]. Key Engineering Materials, 2019, 45(12):116-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/KEM.813.116
|
[20] |
KEATON F, RYAN S, RODNEY P D. Assessing the accuracy of casting and additive manufacturing techniques for fabrication of a complete palatal coverage metal framework[J]. Journal of Prosthodontics: Official Journal of the American College of Prosthodontists, 2019, 36(15):811-817. DOI: 10.1111/jopr.13076
|
[21] |
XIE J W, FOX P, ONEILL W, et al. Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels[J]. Journal of Materials Processing Technology, 2005, 170(18):516-523. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff4f6bc580c63d6c6668b337b74a5060
|
[22] |
MUMTAZ K A, ERASENTHIRAN P, HOPKINSON N. High density selective laser melting of Waspaloy(R)[J]. Journal of Materials Processing Technology, 2008, 195(l/3):77-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC024967524
|
[23] |
MAHARUBIN S, HU Y B, SOORIYAARACHCHI D, et al. Laser engineered net shaping of antimicrobial and biocompatible titanium-silver alloys [J]. Materials Science & Engineering, 2019, 46(4):980-983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fadc2a32de17beac20be1c55218c1444
|
[24] |
SERCOMBE T, JONES N, DAY R, et al. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting[J].Rapid Prototyping Journal, 2008, 14(5):300-304. DOI: 10.1108/13552540810907974
|
[25] |
MURR L E, QUINONES S A, GALONSKA S. Microstructure and mechanical behavior of Ti-6AI-4V produced by rapid-layer manufacturing for biomedical applications[J]. Journal of The Mechanical Behavior of Biomedical Materials, 2008, 18(6):192-203. https://www.academia.edu/8430640/Microstructure_and_mechanical_behavior_of_Ti_6Al_4V_produced_by_rapid-layer_manufacturing_for_biomedical_applications
|
[26] |
THJJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6AI-4V[J]. Acta Material, 2010, 58(8):3303-3312. https://www.sciencedirect.com/science/article/abs/pii/S135964541000090X
|
[27] |
TANG Y, LOU H T, WONG Y S, et al. Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts[J]. Journal of Materials Processing Technology, 2003, 140(62):368-372. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe0b65b9f9a96e41c0ddea87a750519c
|
[28] |
LI R D. Research on the key basic issues in selective laser melting of metallic power[D]. Wuhan: Huazhong University of Science and Technology, 2010: 17-74(in Chinese).
|
[29] |
CHEN Sh, WU J M, SHI Y Sh. General introduction of 3-D printing materials and their applications[J]. Physics, 2018, 47(11):715-724(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-WLZZ201811005.htm
|
[30] |
WANG J F, YUAN J T, WANG Zh H, et al.Deformation and residual stress of TC4 titanium alloy thin-wall parts by selective laser melting[J].Laser Technology, 2019, 43(3):411-415(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201903023
|
[31] |
ZHANG C Y, CHEN X S. The development situation of material based on dental implant [J]. Advanced Materials Research, 2013, 12(26): 541-548. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.699.541
|
[32] |
LIU P L, SUN W L, WANG K D, et al.Effect of scanning speed on the properties of laser cladding nickel-based alloy coating[J].Laser Technology, 2018, 42(6):845-848(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsrcl201704038
|
[33] |
GU D D, SHEN Y F. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder[J]. Journal of Alloys and Compounds, 2007, 432(1/2):163-166. DOI: 10.1016-j.jallcom.2006.06.011/
|
[34] |
NIKOLAK K T, SERGEI E M, IGOR A Y, et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal, 2004, 312(10):78-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e50a5132ec79ef9f63e037383e0903ee
|
[35] |
SUN Z, TAN X, SHU B T, et al. Selective laser melting of stainless steel 316L with low porosity and high build rates[J]. Materials & Design, 2016, 104(35):197-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81b7d4283d5c821d0fd8e2ebd817986b
|
[36] |
ZHANG K, LIU T T, ZHANG Ch D, et al. Study on deformation behavior in selective laser melting based on the analysis of the melt pool data [J]. Chinese Journal of Lasers, 2015, 42(9):0903007(in Chinese). DOI: 10.3788/CJL201542.0903007
|
[37] |
AN Ch, ZHANG Y M, ZHANG J S, et al. Experimental study on density and pore defects of cobalt-chromium alloy fabricated by selective laser melting[J]. Applied Laser, 2018, 38(5):730-737(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyjg201805005
|
[38] |
LIANG X K, DONG P. Microstructure and mechanical properties of selective laser melting Ti-6Al-4V alloy[J].Applied Laser, 2014, 34(2):25-28 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gtft201904009
|
[39] |
YAO H S, SHI Y Sh, ZHANG W X, et al. Numerical simulation of the temperature field in selective laser melting[J]. Applied Laser, 2007, 27(6):456-460 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rkxxb-e201902021
|
[40] |
YANG Y Q, LUO Z Y, SU X B, et al. Study on process and effective factors of stainless steel thin-wall parts manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(1):0103001(in Chinese). DOI: 10.3788/CJL201138.0103001
|
[41] |
LIU Y, ZHANG J, PANG Z, et al.Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method[J].Optics & Lasers in Engineering, 2018, 103:34-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bb90a93b29767da73ed8ccf834d3ae73
|
[42] |
LI Zh H, XU R J, ZHENG Zh G, et al.The influence of scan length on fabricating thin-walled components in selective laser melting[J].International Journal of Machine Tools & Manufacture, 2017, 126:1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35e861bd7bc62ffdf2f0cd2ea7a4bd49
|
1. |
刘凯,王慧琴,吴萌,相建凯,卢英. 基于提升小波的古铜镜X光图像融合方法研究. 激光技术. 2020(01): 113-118 .
![]() | |
2. |
王艳,杨艳春,党建武,王阳萍. 非下采样Contourlet变换域内结合模糊逻辑和自适应脉冲耦合神经网络的图像融合. 激光与光电子学进展. 2019(10): 121-129 .
![]() | |
3. |
陈智勇,孙嘉. 区域分割下序列红外图像智能融合算法研究. 激光杂志. 2019(06): 74-77 .
![]() | |
4. |
蔡怀宇,卓励然,朱攀,黄战华,武晓宇. 基于非下采样轮廓波变换和直觉模糊集的红外与可见光图像融合. 光子学报. 2018(06): 225-234 .
![]() | |
5. |
胡文,王小华,朱怀毅. LNSST域灰度突变度的红外与可见光图像融合. 红外技术. 2018(06): 563-568 .
![]() | |
6. |
高晶,陈晓臻. 基于AR动态图像的人物动作捕捉技术研究. 现代电子技术. 2018(08): 144-146+150 .
![]() | |
7. |
郭佩瑜,张宝华. 基于引导滤波和模糊算法的红外背景抑制算法. 激光技术. 2018(06): 854-858 .
![]() |