Citation: | GUI Kun, ZHANG Zilong, ZHAO Changming, ZHANG Haiyang, TIAN Shun. Study on dual-frequency difference tuning characteristics of microchip cavity with two transverse mode output[J]. LASER TECHNOLOGY, 2020, 44(1): 20-25. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.004 |
[1] |
PILLET G, MORVEN L, MENAGER L, et al. Dual-frequency laser phase locked at 100GHz[J]. Journal of Lightwave Technology, 2014, 32(20): 3824-3830. DOI: 10.1109/JLT.2014.2333036
|
[2] |
PAQUET R, BLIN S, MYARA M, et al. Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz-THz applications[J]. Optics Letters, 2016, 41(16): 3751-3754. DOI: 10.1364/OL.41.003751
|
[3] |
BRUNEL M, LAI N D, VALLET M, et al. Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers[J]. Proceedings of the SPIE, 2004, 5466:131-139. DOI: 10.1117/12.554782
|
[4] |
MCKAY A, DAWES J M. Terahertz generation using a two-frequency highly-doped ceramic Nd: YAG microchip laser[C]// Conference on Lasers and Electro-Optics/International Quantum Electronics Confe-rence. Washington DC, USA: Optical Society of America, 2009: JTuD1.
|
[5] |
WANG Y A, KE Y Zh, CUI S N, et al. Experimental study about power balance mechanism in dual-frequency microchip lasers[J]. Laser Technology, 2018, 42(5):651-654(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201805013
|
[6] |
HU M, ZHANG Y, WEI M, et al. Microchip dual-frequency laser with well-balanced intensity utilizing temperature control[J]. Optics Express, 2016, 24(20): 23383-23389. DOI: 10.1364/OE.24.023383
|
[7] |
LI J, NIU Y, NIU H. Frequency difference stabilization in dual-frequency laser by stress-induced birefringence closed-loop control[J]. Applied Optics, 2016, 55(16):4357-4361. DOI: 10.1364/AO.55.004357
|
[8] |
ZHANG Z L, GUI K, ZHAO Ch M, et al. Self-Q-switch regime based on a beat effect with a dual-frequency microchip laser[J]. Physical Review, 2018, A98(3): 033831. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=211b2d519696460770e17869b9f847fa
|
[9] |
WANG B, WANG Y, KONG L, et al. Multi-target real-time ranging with chaotic laser radar[J]. Chinese Optics Letters, 2008, 6(11): 868-870. DOI: 10.3788/COL20080611.0868
|
[10] |
ZHENG X Y, ZHAO CH M, ZHANG H Y, et al. Coherent dual-frequency lidar system design for distance and speed measurements[J]. Proceedings of the SPIE, 2018, 10619:106190S. http://cn.bing.com/academic/profile?id=ccd6da3a6d64516d4621c7ffc70a1efd&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
ONORI D, SCOTTI F, LAGHEZZA F, et al. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection[C]//2016 IEEE Radar Conference (Radar Conf). New York, USA: IEEE, 2016: 1-5.
|
[12] |
CHEN J, ZHU H, XIA W, et al. Self-mixing birefringent dual-frequency laser Doppler velocimeter[J]. Optics Express, 2017, 25(2):560-572. DOI: 10.1364/OE.25.000560
|
[13] |
LAVERY M P J, SPEIRITS F C, BARNETT S M, et al. Detection of a spinning object using light's orbital angular momentum[J]. Science, 2013, 341(6145):573-540. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f36be4645789aaaf22c03e3cdd327a2
|
[14] |
KIM J W, CLARKSON W A. Selective generation of Laguerre-Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser[J]. Optics Communications, 2013, 296:109-112. DOI: 10.1016/j.optcom.2013.01.046
|
[15] |
WANG Y, SHEN Y, MENG Y, et al. Generation of 1535nm pulsed vortex beam in a diode-pumped Er, Yb:glass microchip laser[J]. IEEE Photonics Technology Letters, 2018, 30(10):891-894. DOI: 10.1109/LPT.2018.2822838
|
[16] |
KIM D J, KIM J W, MACKENZIE J I. Adaptable beam profiles from a dual-cavity Nd:YAG laser[J]. Optics Letters, 2016, 41(8):1740-1743. DOI: 10.1364/OL.41.001740
|
[17] |
ROLLAND A, FREIN L, VALLET M, et al. 40GHz photonic synthesizer using a dual-polarization microlaser[J]. IEEE Photonics Technology Letters, 2010, 22(23):1738-1740. DOI: 10.1109/LPT.2010.2084077
|
[18] |
ZHAO Sh Zh, CHEN L, ZHANG L, et al. Study on temperature dependence of the 1.064μm stimulated emission cross section of Nd:YAG crysyal[J]. Acta Photonica Sinica, 2004, 33(2):133-135(in Chinese). https://ui.adsabs.harvard.edu/abs/2006OptLT..38..645Z/abstract
|
[19] |
WANG X B, XU X J, LU Q Sh. Effect of thermally induced change of stimulated emission cross section in heat capacity lasers[J]. Ch-inese Journal of Lasers, 2009, 36(1):43-46(in Chinese). DOI: 10.3788/CJL20093601.0043
|
[20] |
SATO Y, TAIRA T. Comparative study on the temperature depen-dent emission cross section of Nd: YAG, Nd: YVO4, and Nd: GdVO4[C]//Frontiers in Optics. Washington D C, USA: Optical Society of America, 2011: FThB4.
|
[21] |
ROLLAND A, LOAS G, BRUNEL M, et al. Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: Towards a narrow linewidth tunable THz source[J]. Optics Express, 2011, 19(19):17944-17950. DOI: 10.1364/OE.19.017944
|