Advanced Search
ZHANG Hao, MA Yu, ZHANG Haifeng, YANG Jing, LIU Jiaxuan. Design of a band enhanced absorber based on plasma metamaterial[J]. LASER TECHNOLOGY, 2019, 43(2): 256-262. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.020
Citation: ZHANG Hao, MA Yu, ZHANG Haifeng, YANG Jing, LIU Jiaxuan. Design of a band enhanced absorber based on plasma metamaterial[J]. LASER TECHNOLOGY, 2019, 43(2): 256-262. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.020

Design of a band enhanced absorber based on plasma metamaterial

More Information
  • Received Date: April 16, 2018
  • Revised Date: June 28, 2018
  • Published Date: March 24, 2019
  • In order to achieve the absorption curve with broadening (within 11GHz~14GHz band) and tunable bandwidth under TE wave, a new metamaterial absorber was proposed whose periodic structural unit adopted honeycomb-shaped hexagonal structure.The parametric analysis chart of the absorber was calculated.The effects of variables g and d on absorbing band and absorbing bandwidth were studied.The cause of bandwidth broadening of the etched cross-shaped absorber was also explained.The results show that, absorption rate of the absorber in the low frequency domain at 9.17GHz~9.5GHz is over 90%.When different plasma resonance regions are excited, the time-frequency domain absorption of the absorber can be realized.And the absorptive capacity of the absorber can be improved.By changing the variables g and d, the dynamic control of the absorption band can be realized.The absorption bandwidth in the high frequency domain can be widened by etching cross-shaped structure in a square structure.Its absorption rate in the frequency domain of 12.08GHz~13.91GHz is higher than 90%.By changing the variable s, the absorption band can be obviously widened.The absorber is insensitive to the angle of incident electromagnetic wave.The design idea provides an effective way to broaden the absorption bandwidth of absorbers.
  • [1]
    HATAKEEYYAMA K, INUI T. Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers[J]. IEEE Transactions on Magnetics, 1984, 20(5):1261-1263. DOI: 10.1109/TMAG.1984.1063424
    [2]
    LIMA U R, NASAR M C, NASAR R S, et al. Ni-Zn nanoferrite for radar-absorbing material[J]. Journal of Magnetism & Magnetic Materials, 2008, 320(10):1666-1670. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e6da0162397a84f96163cc9464d983c
    [3]
    MARIN P, CORTINAD, HERNANDO A. Electromagnetic wave absorbing material based on magnetic microwires[J]. IEEE Transactions on Magnetics, 2008, 44(11):3934-3937. DOI: 10.1109/TMAG.2008.2002472
    [4]
    HODGKINSON I, WU Q H. Inorganic chiral optical materials[J]. Advanced Materials, 2001, 13(12/13):889-897. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221676448/
    [5]
    SIONCKE S, VERBIEST T, PERSOOONS A. Second-order nonlinear optical properties of chiral materials[J]. Materials Science and Engineering, 2003, R42(5/6):115-155.
    [6]
    SHIM J M, SHAN S C, KOŠMRLJ A, et al. Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials[J]. Soft Matter, 2013, 9(34):8198-8202. DOI: 10.1039/c3sm51148k
    [7]
    WANG J F, QU Sh B, MA H, et al. Tunable planar left-handed metamaterials based on split-ring resonator pairs[C]//IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications. New York, USA: IEEE, 2015: 1-3.
    [8]
    ZHOU H, WANG C, PENG H. A novel double-incidence and multi-band left-handed metamaterials composed of double Z-shaped structure[J]. Journal of Materials Science Materials in Electronics, 2016, 27(3):2534-2544. DOI: 10.1007/s10854-015-4056-2
    [9]
    LIU S H, GUO L X, LI J Ch. Left-handed metamaterials based on only modified circular electric resonators[J]. Journal of Modern Optics, 2016, 63(21):2220-2225. DOI: 10.1080/09500340.2016.1189008
    [10]
    RYBIN O, SHULGA S. Profile miniaturization and performance improvement of a rectangular patch antenna using magnetic metamaterial substrates[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2016, 26(3):254-261. DOI: 10.1002/mmce.v26.3
    [11]
    ZHANG Y, TANG H, YAO Ch, et al. Experiments on adjustable magnetic metamaterials applied in megahertz wireless power transmission[J]. AIP Advances, 2015, 5(1):2075-2084.
    [12]
    KIRIUSHECHKINA S V, KOTEI'NIKOVA O A, RADKOVSKAYA A A. Peculiarities of propagation of electroinductive waves in magnetic metamaterials[J]. Physics of Wave Phenomena, 2017, 25(2):101-106. DOI: 10.3103/S1541308X17020042
    [13]
    TARKHANAYAN R H. Effective permittivity and permeability of magnetic metamaterials with periodic array of 2-D electronic layers in quantum hall effect conditions[J]. Journal of Electromagnetic Waves & Applications, 2008, 22(7):1005-1012.
    [14]
    WANG R L, WANG J F, LI Y F, et al. Dual-band suspended stripline filter based on electric metamaterials[J]. Microwave & Optical Technology Letters, 2017, 59(9):2297-2302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57f61e66266c3b5e858a96811c8daf1f
    [15]
    WEI Y Sh, SU AN, XU J Y, et al. Characteristics of dual-channel optical filter in quaternary heterostructure photonic crystal [J]. Laser Technology, 2018, 42(2): 212-212(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201802014
    [16]
    ZHANG X D, CHEN N, NIE F K, et al. Dispersion characteristics analysis of photonic crystal fibers based on structure parameters and filling modes [J]. Laser Technology, 2018, 42(1):48-52 (in Chinese).
    [17]
    LANDY N I, SAIUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. DOI: 10.1103/PhysRevLett.100.207402
    [18]
    ZHANG H, ZHANG H F, YANG J, et al. Design of an absorber based on plasma metamaterial[J]. Laser Technology, 2018, 42(5): 704-708(in Chinese).
    [19]
    WU D, LIU Y, LI R, et al. Infrared perfect ultra-narrow band absorber as plasmonic sensor [J]. Nanoscale Research Letters, 2016, 11(1):483-491. DOI: 10.1186/s11671-016-1705-1
    [20]
    WANG B X, WANG L L, WANG G Z, et al. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber[J]. IEEE Photonics Technology Letters, 2014, 26(2): 111-114. DOI: 10.1109/LPT.2013.2289299
    [21]
    LI L, WANG J, DU H, et al. A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators[J]. AIP Advances, 2015, 5(1): 017147. DOI: 10.1063/1.4907050
    [22]
    DING F, CUI Y, GE X, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10):103506. DOI: 10.1063/1.3692178
    [23]
    CHENG Y Zh, WANG Y, NIE Y, et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements[J]. Journal of Applied Physics, 2012, 111(4): 044902. DOI: 10.1063/1.3684553
    [24]
    KONG X K, LI H M, BIAN B R, et al. Microwave tunneling in heterostructures with electromagnetically induced transparency-like metamaterials based on solid state plasma[J]. The European Physical Journal Applied Physics, 2016, 74(3): 30801. DOI: 10.1051/epjap/2016150452
    [25]
    KONG X K, MO J J, YU Zh Y, et al. Reconfigurable designs for electromagnetically induced transparency in solid state plasma metamaterials with multiple transmission windows[J]. International Journal of Modern Physics, 2016, B30(14): 1650070. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f696b59cdea7d584b0e345e18fe189c
    [26]
    BALANIS C A. Antenna theory: analysis and design[M].Hoboken, New Jersey, USA:John Wiley & Sons, 1982:989-990.

Catalog

    Article views (4) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return