高级检索

基于2维最大熵最佳阈值算法的图像分割研究

魏雪峰, 刘晓

魏雪峰, 刘晓. 基于2维最大熵最佳阈值算法的图像分割研究[J]. 激光技术, 2013, 37(4): 519-522. DOI: 10.7510/jgjs.issn.1001-3806.2013.04.023
引用本文: 魏雪峰, 刘晓. 基于2维最大熵最佳阈值算法的图像分割研究[J]. 激光技术, 2013, 37(4): 519-522. DOI: 10.7510/jgjs.issn.1001-3806.2013.04.023
WEI Xu-feng, LIU Xiao. Research of image segmentation based on 2-D maximum entropy optimal threshold[J]. LASER TECHNOLOGY, 2013, 37(4): 519-522. DOI: 10.7510/jgjs.issn.1001-3806.2013.04.023
Citation: WEI Xu-feng, LIU Xiao. Research of image segmentation based on 2-D maximum entropy optimal threshold[J]. LASER TECHNOLOGY, 2013, 37(4): 519-522. DOI: 10.7510/jgjs.issn.1001-3806.2013.04.023

基于2维最大熵最佳阈值算法的图像分割研究

详细信息
    作者简介:

    魏雪峰(1973- ),男,硕士,副教授,研究方向为信息处理。E-mail:hhwxf2013@foxmail.com

  • 中图分类号: 

    TN911.73

Research of image segmentation based on 2-D maximum entropy optimal threshold

  • 摘要: 为了提高图像分割的质量,采用2维最大熵最佳阈值方法,首先通过灰度区域确定该域像素的2维随机向量,在准则函数下求得到2维最大熵最佳阈值;接着通过递推优化对2维最大熵最佳阈值计算数据优化处理,减少重复性数据计算量;最后通过分割图像区域与原目标空间位置的互信息量最大准则,把误分割误差函数作为检测分割标准,给出了算法流程;并仿真出了不同算法的图像分割结果。结果表明,该算法得到图像分割的精度较高,没有背景与噪声的残留,保留了图像信息,执行速度快、分割效果视觉好、误分割误差最小。这对提升图像分割效率是有帮助的。
    Abstract: In order to improve the quality of image segmentation, two-dimensional maximum entropy optimal threshold (TDMEOT) method was used. Firstly, 2-D random vector of the domain pixels was defined through the gray region and TDMEOT value was gotten by the criterion function. Secondly, calculation data of 2-D maximum entropy threshold were optimized through the recursive optimization and the repetitive data calculation was reduced. Finally, based on the maximum mutual information criterion between the segmentation image area and the target space position and choosing error segmentation function as the segmentation standard, the algorithm flow and the image segmentation results of different algorithms were given after experimental simulation. The results show that this method has higher precision of image segmentation and has no residual background noise, and retains the image information with fast speed, good segmentation visual and minimum segmentation error. The research is helpful to improve the efficiency of image segmentation.
  • [1]

    LIU Y,ZHAO Y L.Quick approach of multi-threshold Otsu method for image segmentation[J]. Journal of Computer Applications,2011,31(12): 3363-3365(in Chinese).

    [2]

    CHEN L Ch.Fast thresholding for image segmentation based on 0~1 programming[J]. Computer Engineering and Applications,2012,48(10):197-199(in Chinese).

    [3]

    TAN Y M,HUAI J Zh,TANG Zh Sh. Edge-guided segmentation method for multiscale and high resolution remote sensing Image[J]. Journal of Infrared and Millimeter Waves,2010,29(4): 312-315(in Chinese).

    [4]

    XU Sh H,LIU J P,HU M Y.Automatic building detection in color aerial images based on region segmentation[J]. Journal of Liaoning Technical University(Natural Science Edition),2010,29(6): 1058-1061 (in Chinese).

    [5]

    ZHANG Q H,LI G M,LIN B H,et al. Threshold image segmentation based on maximum entropy-variance model[J]. Computer Technology and Development,2011,21(6): 43-45(in Chinese).

    [6]

    CHEN Sh Y,ZHANG Sh L.Detection of news captions based on gray-scale difference statistics and two-dimensional maximum entropy threshold[J]. Application Research of Computers,2011,28(8): 3195-3197 (in Chinese).

    [7]

    XU L T,XU X M.A calcification detection method based on two-dimensional entropic thresholding[J]. Computer Simulation,2010,27(9): 255-257(in Chinese).

    [8]

    GUO M Sh,LIU B H.2-D maximum entropy method in image segmentation based on chaos genetic algorithm[J].Computer Technology and Development,2008,18(8): 101-104(in Chinese).

    [9]

    WU Y Q,WU J M,ZHAN B Ch. An effective method of threshold selection for small object image[J]. Acta Armamentarii,2011,32(4): 469-475(in Chinese).

    [10]

    ZHANG X M,ZHANG A L,ZHENG Y B,et al.Improved two-dimensional maximum entropy image thresholding and its fast recursive realization[J]. Computer Science,2011,38(8): 278-283 (in Chinese).

    [11]

    CHEN J,ZHU H. A method of image segmentation based on mutual information and threshold iteration[J].Journal of Wuhan University of Technology,2011,35(3): 641-644(in Chinese).

    [12]

    LU Zh L, LI R L, LI T, et al. Infrared image denosing based on total variation theory[J]. Laser Technology,2012,36(2):194-197(in Chinese).

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-14
  • 修回日期:  2012-12-02
  • 发布日期:  2013-07-24

目录

    /

    返回文章
    返回