高级检索

圆谐梅林滤波器在模式识别中的计算机仿真研究

吴友朋, 王红霞, 周战荣, 成燕归, 李正亮

吴友朋, 王红霞, 周战荣, 成燕归, 李正亮. 圆谐梅林滤波器在模式识别中的计算机仿真研究[J]. 激光技术, 2007, 31(1): 86-88.
引用本文: 吴友朋, 王红霞, 周战荣, 成燕归, 李正亮. 圆谐梅林滤波器在模式识别中的计算机仿真研究[J]. 激光技术, 2007, 31(1): 86-88.
WU You-peng, WANG Hong-xia, ZHOU Zhan-rong, CHENG Yan-gui, LI Zheng-liang. Simulation of circular harmonic Mellin filter in pattern recognition[J]. LASER TECHNOLOGY, 2007, 31(1): 86-88.
Citation: WU You-peng, WANG Hong-xia, ZHOU Zhan-rong, CHENG Yan-gui, LI Zheng-liang. Simulation of circular harmonic Mellin filter in pattern recognition[J]. LASER TECHNOLOGY, 2007, 31(1): 86-88.

圆谐梅林滤波器在模式识别中的计算机仿真研究

详细信息
    作者简介:

    吴友朋(1980- ),男,硕士研究生,主要从事光学信息处理的研究.

    通讯作者:

    王红霞,E-mail:redlightw@163.com

  • 中图分类号: O438.2

Simulation of circular harmonic Mellin filter in pattern recognition

  • 摘要: 为了实现滤波旋转和尺度不变的目的,提出了将圆谐梅林滤波器用于模式识别。从圆谐展开函数引出旋转不变滤波器,从梅林变换引出尺度不变滤波器,并将这两个滤波器结合得到旋转和尺度不变的圆谐梅林滤波器。计算机模拟实验证明,圆谐梅林滤波器具有旋转和尺度不变性;能很好地提取畸变物体的角点和边缘,尤其是角点,并可以由角点处的相关输出峰值判断边的结构。
    Abstract: The circular harmonic Mellin filter is proposed in pattern recognition to obtain the characters of invariable rotation and scale.The circular harmonic transform and Mellin transform are combined to form the circular harmonic Mellin transform.Simulation results show the rotation and scale of the filterkeeps constant.It can pick up the inflexion and edge of the object and the structure of edge is judged by the correlation peaks of inflexions.
  • [1]

    VANDER-LUGT A.Signal detection by complex spatial filtering[J].IEEE Transactions on Information Theory,1964,IT-10 (2):139~145.

    [2]

    HSU Y,ARSENAULT H H.Rotation-invariant digital pattern recognition using circular harmonic expansion[J].Appl Opt,1982,21 (22):4012~4015.

    [3]

    YANG B Y,FENG D Y.Method for determining expansion centers for circular harmonic filter[J].Optoelectronic Technology Information,2005,18 (3):63~66 (in Chinese).

    [4]

    YU F T S,LI X,TAM E et al.Rotation invariant pattern recognition with a programmable joint transform correlator[J].Appl Opt,1989,28 (22):4725~4727.

    [5]

    MU G G,WANG Zh Q,WANG X M.The effects of rotation and scale change with amplitude-compensated filter[J].Acta Optica Sinica,1988,8 (8):764~766 (in Chinese).

    [6]

    CHENG H Q,NIE Sh P,BIAN S L et al.The application of orthogonal Fourier-Mellin moments in optical pattern recognition[J].Opto-electronic Engineering,1996,23 (4):16~21 (in Chinese).

    [7]

    WANG Sh F.Application and theory of information optics[M].Beijing:Beijing University of Posts and Telecommunications Press,2003.211~212 (in Chinese).

    [8]

    ZHANG W J,SHEN Y L.A minimizing algorithm for sum of disjoint products[J].Journal of Nanjing University of Postsand Telecommunications(Natural Science),1999,19(4):15~19(in Chinese).

    [9]

    CHEN X W,CHEN Zh P.Rotation invariant amplitude phase composite circular harmonic filter[J].Acta Optica Sinica,1996,16 (3):373~377 (in Chinese).

    [10]

    SUN Y,WANG Z Q,MU G G.Amplitude compensated matched filters using circular harmonics expansion and a Mellin transform[J].Journal of Applied Opitcs,1990,29 (34):4779~4783 (in Chinese).

    [11]

    RAVICHANDRAN G,CASASENT D.Advanced in-plane rotation invariant filters[J].IEEE Transactions Pattern Analysis Machine Intelligence,1994,16 (4):415~420.

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-12-29
  • 修回日期:  2006-04-06
  • 发布日期:  2007-02-24

目录

    /

    返回文章
    返回