Research of data processing systems for infrared imaging spectrometer based on FPGA
-
摘要: 目标实时探测是红外成像光谱系统的重要研究方向之一。为了同时保障系统数据处理速度与光谱复现精度, 研究了一种高速光谱反演系统。该系统由现场可编程门阵列(FPGA)芯片实现, 对干涉条纹图像进行非均匀性校正、加窗切趾, 从而抑制干涉条纹数据中的直流噪声及杂散噪声; 再经快速傅里叶变换、相位校正、光谱标定最终获得光谱分布。结果表明, 本算法对杂散噪声具有很好的抑制效果, 非均匀性系数由11.23%降低至1.05%;对光谱的反演实验中本系统获得的光谱分布形态与MATLAB结果基本一致, 且在光谱细节部分的准确度更好一些; 系统采用流水线工作方式缩短了数据处理周期, 并且基于FPGA芯片的开发模块具有更强的兼容性。该系统具有处理速度快、体积小、稳定性高、兼容性强等优点, 在红外目标实时探测领域具有很好的应用前景。Abstract: Real-time target detection is one of the important research directions of infrared imaging spectral systems. In order to guarantee the data processing speed and spectral reproducing accuracy of the system at the same time, a high-speed spectral inversion system was studied. The system was implemented by a field-programmable gate array (FPGA) chip. Non-uniformity correction and windowed toe-cutting were applied to the interference fringe image to suppress the direct current noise and spurious noise in interference fringe data. Then spectral distribution was obtained after fast Fourier transform, phase correction and spectrum calibration. The results show that the algorithm has a good suppression effect on spurious noise. Coefficient of inhomogeneity decreases from 11.23% to 1.05%. In the experiment of spectral inversion, the spectral distribution obtained by this system is basically consistent with that obtained by MATLAB. The accuracy of spectral details is better. The system uses pipeline mode to shorten the data processing cycle. And the development module based on FPGA chip has better compatibility. The system has the advantages of fast processing speed, small volume, high stability and good compatibility. It has good application prospect in the field of infrared target real-time detection.
-
-
-
[1] LÜ M, CHEN Ch, WANG Y D. High-speed optical signal acquisition system for trace gases detection in mid-infrared absorption spectrum [J]. Laser Journal, 2016, 40(2): 153-156(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgzz201602008
[2] ZHOU Zh J, ZHANG Y G, FAN B. Design of interference signal double ADC acquisition system based on FPGA[J]. Electronic Mea-surement Technology, 2016, 12(4): 123-128(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzcljs201612029
[3] MANZARDO O, HERZIG H P, CULDIMANN B, et al. New design for an integrated fourier transform spectrometer[J].Proceedings of the SPIE, 2000, 4178:310-319. DOI: 10.1117/12.396502
[4] DAI J, TANG X Ch, GAO Zh F. Design and implementation of an infrared image processing system under sea and sky background[J]. Infrared Technology, 2016, 38(2): 121-125(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwjs201602007
[5] ROSSI A, DIANI M, CORSINI G. Bilateral filter-based adaptive non-uniformity correction for infrared focal-plane array systems[J]. Optical Engineering, 2010, 49(5): 057003. DOI: 10.1117/1.3425660
[6] KAZUMASA T, HIROTAKA A, KATSUNARI O. Correction for phase-shift deviation in a complex Fourier transform integrated-optic spatial heterodyne spectrometer with an active phase-shift scheme[J]. Optics Letters, 2011, 36(7): 1044-1046. DOI: 10.1364/OL.36.001044
[7] ZHANG D L, SHEN X L, SONG Y K, et al. Design and implementation of large FFT convolution on heterogeneous multicore programma-ble system[J]. Application of Electronic Technique, 2017, 43(3): 16-20(in Chinese). http://ieeexplore.ieee.org/document/7813622/
[8] LI Ch, WAN X X, XIE W, et al. Color filter design method for multi-channel spectral acquisition system[J]. Journal of Applied Optics, 2016, 37(5): 639-643(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201605001
[9] MILES A J, WIEN F, LEES J G. Calibration and standardization of synchrotron radiation and conventional circular dichroism spectrometers. Part 2: Factors affecting magnitude and wavelength[J]. Spectroscopy, 2005, 19(1): 43-51. http://nar.oxfordjournals.org/external-ref?access_num=10.1155/2005/263649&link_type=DOI
[10] WANG W, LU Y H, LU F, et al. Design of moving mirror control system of Fourier transform infrared spectrometer based on DSP[J]. Chinese Journal of Quantum Electronics, 2015, 32(1): 8-16(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/lzdzxb201501002
[11] HE G, BAI P, PENG W D, et al. The design and realization for slip correlation capture algorithmic of a sort of communication systems based on FPGA IP core[J].Journal of Jiangxi Normal University(Natural Science Edition), 2011, 35(2): 151-154(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxsfdxxb201102010
[12] GUO J, LU Q P, GAO H Zh, et al. Design of noninvasive blood constituent spectrum data acquisition system based on FPGA[J]. Spectroscopy and Spectral Analysis, 2016, 36(9): 2991-2996(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201609050
[13] HE M, ZHANG T Y, WANG Y D, et al. Non-uniformity correction algorithm based on wavelet transform histogram normalization[J]. Infrared and Laser Engineering, 2014, 42(12): 3481-3485(in Ch-inese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201312057
[14] YING Sh M, YING X F, CHEN H B, et al. Study on nonuniformity online calibration and correction of fourier transform infrared imaging spectrometer[J]. Infrared Technology, 2014, 36(7): 567-572(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwjs201407010
[15] DU Sh S, WANG Y M, TAO R. Multiple beam interferential spectral imaging technology[J]. Acta Optica Sinica, 2013, 33(8): 830003 (in Chinese). DOI: 10.3788/AOS201333.0830003
[16] SUN X L, SUN H F, ZHAO Sh P. Design and implementation of high-speed spectrum data processing system based on FPGA[J]. Chinese Journal of Sensors and Actuators, 2018, 31(2): 319-322(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzjsyy201811010
[17] LIU J P, XUE H R. High-speed spectrum acquisition and processing system based on FPGA [J]. Infrared Technology, 2018, 40(11):1042-1046(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hwjs201811003
[18] YING Sh M, LIANG Y B, ZHU J M, et al. Study on real-time spectrum recovery system on a FPGA chip for Fourier transform infrared imaging spectrometer[J]. Infrared and Laser Engineering, 2015, 44(12): 3580-3586(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201512014
-
期刊类型引用(9)
1. 刘杰徽,甘若宏,甘智宇,王锋,李婷. 基于FPGA的多通道可见光通信系统的设计与实现. 电子技术应用. 2023(03): 147-152 . 百度学术
2. 徐帅,朱启兵,黄敏. 手持式食品残留物荧光成像检测系统开发. 激光技术. 2023(06): 872-880 . 本站查看
3. 王研,梁洪涛,杨阿荣. 基于中值滤波去噪算法的激光光谱图像数据库构建. 激光杂志. 2022(02): 110-113 . 百度学术
4. 时月梅,张健. 大数据分析的红外图像非均匀性自动校正系统. 激光杂志. 2022(08): 159-163 . 百度学术
5. 周文婷,姚茂华. 基于遥感地理信息的复杂地形红外成像系统. 激光杂志. 2021(01): 166-169 . 百度学术
6. 江建. 嵌入式Web服务器下光谱成像技术研究. 激光杂志. 2021(03): 115-119 . 百度学术
7. 洪耀球,占俊. 基于嵌入式技术的激光器自动控制系统. 激光杂志. 2021(11): 168-172 . 百度学术
8. 张永超,赵录怀,邱轲. 锰铜合金导线在电涡流位移传感器中的应用. 电子设计工程. 2020(03): 149-152 . 百度学术
9. 王洪亮,赵雨梦,刘志坚,孙玄子,陈新源,杨陈臣. 一种无人机搭载的红外成像高压架空线路探伤系统. 电子测量技术. 2020(15): 29-35 . 百度学术
其他类型引用(0)