Effect of process parameters on laser welding of nodular cast iron and low carbon steel
-
摘要: 为了提高球墨铸铁和低碳钢焊接接头力学性能, 解决容易开裂的问题, 采用激光焊接的方法对球墨铸铁和低碳钢进行焊接, 研究了工艺参数对其焊接接头的组织和性能影响。结果表明, 随着激光功率逐渐增加或焊接速率的逐渐变缓, 试验件抗拉强度呈现出先增大后减小的变化趋势; 当焊接功率为4250 W和焊接速率为2.4 m/min时, 试样件焊接接头的强度处于极值400 MPa; 在球墨铸铁侧热影响区内形成3种壳体结构(双壳结构、单壳结构和无核结构); 焊缝区组织主要由树枝晶组织、少量的马氏体和莱氏体组织构成; 焊缝区存在微裂纹, 通过添加镍基材料可获得无裂纹焊缝, 并提升抗拉强度约40 MPa, 达到母材的95%。该研究对后续球墨铸铁与低碳钢高功率激光焊接工艺优化是有帮助的。Abstract: In order to improve the low mechanical properties and cracking of the welded joint between ductile iron and low carbon steel, laser welding was used to weld ductile iron and low carbon steel, and the effects of process parameters on the microstructure and properties of the welded joint were studied. The results show that with the increase of laser power or the gradual slowing of welding speed, the tensile strength of the test piece shows a trend of first increasing and then decreasing. When the welding process parameters are at 4250 W welding power and 2.4 m/min welding speed, the strength of the welded joint of the specimen is at the extreme value of 400 MPa.Three kinds of shell structures (double shell structure, single shell structure, and coreless structure) are formed in the heat-affected zone at the side of nodular cast iron. The microstructure in the weld zone is mainly composed of dendrite, a small amount of martensite, and ledeburite. There are microcracks in the weld zone. The crack-free weld can be obtained by adding nickel-based materials, and the tensile strength can be improved by about 40 MPa, reaching 95% of the base metal. This research is helpful in the optimization of the high-power laser welding process between nodular cast iron and low carbon steel.
-
Keywords:
- laser technique /
- laser welding /
- nodular cast iron /
- low carbon steel
-
-
表 1 母材的化学成分(质量分数w)/%
Table 1 Chemical composition of base metal(mass fraction w)/%
material w(C) w(Si) w(Mn) w(P) w(S) w(Fe) 20CrMnTi 0.17~0.23 0.17~0.37 0.18~1.10 ≤0.03 ≤0.03 balance QT450-10 3.70~3.90 2.40~2.60 0.15~0.30 ≤0.04 ≤0.02 balance 表 2 填充粉末和焊丝的化学成分(质量分数w)/%
Table 2 Chemical composition of filler powder and wire(mass fraction w)/%
material w(C) w(Si) w(Mn) w(Cr) w(Mo) w(Nb) w(Fe) w(Ni) Ni201 0.02 0.10 0.40 15.50 15.50 0.31 0.70 balance ERNiCrMo-4 0.009 0.12 0.05 21.9 8.65 3.70 0.40 balance 表 3 焊接参数
Table 3 Welding parameters
sample power/W speed/(m·min-1) defocus/mm weldmethod 1 3500 2.4 -2 not filler 2 3750 2.4 -2 3 4000 2.4 -2 4 4250 2.4 -2 5 4500 2.4 -2 6 4000 1.2 -2 7 4000 1.8 -2 8 4000 2.4 -2 9 4000 3.0 -2 10 4000 3.6 -2 11 2500 1.2 -2 filler powder 12 3000 1.2 -2 filler wire -
[1] 杨胶溪, 左铁钏, 徐文清, 等. 球墨铸铁表面激光熔覆钴基合金涂层的研究[J]. 激光技术, 2006, 30(5): 517-519. YANG J X, ZUO T Ch, XU W Q, et al. The research of laser cladding Co-base alloy coating on ductile cast iron[J]. Laser Technology, 2006, 30(5): 517-519 (in Chinese).
[2] CHANG H T, WANG C J, CHENG C P. Friction stir lap welded low carbon steel and ductile iron: Microstructure and mechanical properties[J]. Science and Technology of Welding and Joining, 2013, 18(8): 688-696. DOI: 10.1179/1362171813Y.0000000150
[3] SADEGHI A, MOLOODI A, GOLESTANIPOUR M, et al. An investigation of abrasive wear and corrosion behavior of surface repair of gray cast iron by SMAW[J]. Journal of Materials Research and Technology, 2017, 6(1): 90-95. DOI: 10.1016/j.jmrt.2016.09.003
[4] SEKIGUCHI S, SHIBATA F. Mechanical properties of electron beam welded spheroidal graphite cast iron and mild steel welded joints[J]. Materials Transactions, 2011, 52(11): 1920-1925.
[5] 李忠, 王涛, 刘佳, 等. 工艺参量对铝合金复合焊接接头耐蚀性的影响[J]. 激光技术, 2019, 43(2): 189-194. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.008 LI Zh, WANG T, LIU J, et al. Effect of process parameters on corrosion resistance of aluminum alloy hybrid welded joints[J]. Laser Technology, 2019, 43(2): 189-194 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2019.02.008
[6] KIM J S, KIM J W, PYO C M, et al. Bead geometry prediction model for 9% nickel laser weldment, Part 1: Global regression model vs. modified regression model[J]. Processes, 2021, 9(5): 793. DOI: 10.3390/pr9050793
[7] SOMMER N, LEHTO J M, VLKERS S, et al. Laser welding of grey cast iron with spheroidal graphite-influence of process parameters on crack formation and hardness[J]. Metals-Open Access Metallurgy Journal, 2021, 11(4): 532.
[8] RONNY G, FRANCISCO S, OLGA P, et al. Comparing the structure and mechanical properties of welds on ductile cast iron (700 MPa) under different heat treatment conditions[J]. Metals-Open Access Metallurgy Journal, 2018, 8(1): 72.
[9] WANG H, SHI Y, GONG S. Numerical simulation of laser keyhole welding processes based on control volume methods[J]. Journal of Physics, 2006, D39(21): 4722.
[10] 吴东江, 柴东升, 程波, 等. 脉冲激光填丝焊接薄板熔池流动行为分析[J]. 中国科学: 物理学力学天文学, 2020, 50(3): 034208. WU D J, CHAI D Sh, CHENG B, et al. Flow characteristics of the molten pool in pulsed laser welding of thin sheet with filler wire[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2020, 50(3): 034208(in Chinese).
[11] POURANVARI M. On the weldability of grey cast iron using nickel based filler metal[J]. Materials & Design, 2010, 31(7): 3253-3258.
[12] JANICKI D, GÓRKA J, KWAS'NY W, et al. Influence of solidification conditions on the microstructure of laser-surface-melted ductile cast iron[J]. Materials, 2020, 13(5): 1174. DOI: 10.3390/ma13051174
[13] JAHUN F R, BENHUA Z, YUQIU S, et al. Influence of plasma remelting conditions on quantitative graphite dissolution and modified surface characteristics in 500-12 ductile iron[J]. Materials Research Express, 2020, 7(7): 076502. DOI: 10.1088/2053-1591/ab9f81
[14] 韩善果, 杨永强, 蔡得涛, 等. 光丝位置对铝合金激光填丝焊接过程的影响[J]. 激光技术, 2022, 46(4): 481-485. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.007 HAN Sh G, YANG Y Q, CAI D T, et al. Influence of the distance between laser and wire on the process of aluminum alloy welding with filler wire[J]. Laser Technology, 2022, 46(4): 481-485(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.007
[15] 陈根余, 江东远, 王彬, 等. 6061铝合金超声波辅助激光焊接变形控制研究[J]. 激光技术, 2021, 45(5): 541-547. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.001 CHEN G Y, JIANG D Y, WANG B, et al. Research on deformation control of ultrasonic-assisted laser welding of 6061 aluminum alloy[J]. Laser Technology, 2021, 45(5): 541-547 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.05.001
[16] SHI Y, LI Y F, LIU J, et al. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel[J]. Optics & Laser Technology, 2017, 99(9): 256-270.
[17] 李永健. 球墨铸铁件激光增材再制造组织演变规律及性能控制[D]. 哈尔滨: 哈尔滨工业大学, 2019. LI Y J. Microstructure evolution and performance control of laser additive remanufacturing ductile iron component[D]. Harbin: Harbin Industrial University, 2019(in Chinese).
[18] GHAINI F M, EBRAHIMNIA M, GHOLIZADE S. Characteristics of cracks in heat affected zone of ductile cast iron in powder welding process[J]. Engineering Failure Analysis, 2011, 18(1): 47-51. DOI: 10.1016/j.engfailanal.2010.08.002
[19] MARTÍNEZ A J, PASCUAL G M, SOLANO G L, et al. Mechanical and microstructural analysis in the welding of ductile cast iron by TIG procedure, with different filler materials and air cooling[J]. Revista de Metalurgia, 2021, 57(2): 1-7.
[20] LACAZE J, SERTUCHA J, LARRAÑAGA P, et al. Statistical study to determine the effect of carbon, silicon, nickel and other alloying elements on the mechanical properties of as-cast ferritic ductile irons[J]. Revista de Metalurgia, 2014, 52 (2): 1-4.