Distinguishing different metallographic structures based on laser technology
-
摘要: 为了研究激光技术应用于区分不同金相组织的可行性,采用不同的热处理方法分别得到珠光体+铁素体和马氏体这两种不同的金相组织的钢样,选择合适的激光脉冲能量,对比分析了激光诱导击穿光谱的谱线强度与金相组织的关系,用主成分分析法对不同金相组织进行了区分。结果表明,不同金相组织的谱线强度不同,其中珠光体+铁素体组织的谱线强度较大,基体元素Fe的谱线强度差异比合金元素Mn的谱线强度差异大;不同金相组织呈现一定分布特性,主成分分析法能对不同金相组织进行区分,其中在波长范围280nm~320nm内区分效果最好。该研究验证了激光技术具有区分不同金相组织的能力。Abstract: In order to study the feasibility that laser technology was used to distinguish different metallographic structures, two different metallographic structures of pearlite + ferrite and martensite were obtained by different heat treatment methods. The suitable laser pulse energy was chosen, and the relationship between breakdown spectral line strength induced by laser and metallographic group was analyzed and compared. The principal component analysis was used to distinguish the different metallographic structures. The experimental results show that the spectral line intensity of different metallographic structures is different. The spectral line intensity of pearlite + ferrite structure is larger. The difference of spectral line strength with matrix element Fe is larger than that with matrix element alloy Mn. Different metallographic structures show certain distribution characteristics. Principal component analysis method can distinguish the different metallographic structures. The distinguishing result is the best in wavelength range of 280nm~320nm. This study proves that laser technology has the ability to distinguish different metallographic structures.
-
Keywords:
- laser technique /
- microstructure /
- principal component analysis /
- laser energy /
- line intensity
-
-
Table 1 Element contents of S45C steel
element mass fraction C 0.0042~0.0048 Si 0.0015~0.0035 Mn 0.0060~0.0090 P ≤0.00030 S ≤0.00035 Cu ≤0.0030 Ni ≤0.0020 Cr ≤0.0020 Fe the rest Table 2 Spectral lines of the analyzed elements
element wavelength/
nmEl/
cm-1Eu/
cm-1A/
108 s-1∑Mn 403.076 0 24808.25 0.170 403.307 0 24788.05 0.165 403.449 0 24779.32 0.158 Fe 1 400.524 12560.934 37521.161 0.204 Fe 2 404.581 11976.239 36686.176 0.862 Fe 3 406.359 12560.934 37162.746 0.665 Fe 4 407.174 12968.554 37521.161 0.764 Fe 5 260.683 7376.764 45726.130 0.243 Fe 6 275.014 415.933 36766.966 0.274 Fe 7 304.174 7728.060 40594.432 0.052 -
[1] CHEN J Zh, CHEN Zh Y, SUN J, et al. Enhancement on laser-induced plasma spectroscopy with a flat mirror[J]. Journal of Optoelectronics·Laser, 2013, 24(9):1838-1843(in Chinese).
[2] ZHENG X F, YANG R, TANG X Sh, et al. An investigation on the electron and ion property of the laser produced plasma under additional static electricity field[J]. Chinese Journal of Atomic and Molecular Physics, 2002, 19(1):1-5(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yzyfzwlxb200201001
[3] MATEO M P, CABALÍN L M, LASERNA J J. Automated line-focused laser ablation for mapping of inclusions in stainless steel[J].Applied Spectroscopy, 2003, 57(12):1461-1467. DOI: 10.1366/000370203322640080
[4] LIU X Y, WANG Zh Y, HE L Q, et al. Application of laser induced breakdown spectroscopy technology in biomedicine field[J]. Laser Technology, 2008, 32(2):134-136(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200802008.htm
[5] MICHEL A P M, CHAVE A D. Analysis of laser-induced breakdown spectroscopy spectra:the case for extreme value statistics[J]. Spectrochimica Acta, 2007, B62(12):1370-1378. http://www.sciencedirect.com/science/article/pii/S0584854707003308
[6] TELLE H H, BEDDOWS D C S, MORRIS G W, et al. Sensitive and selective spectrochemical analysis of metallic samples:the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy[J]. Spectrochimica Acta, 2001, B56(6):947-960. http://www.sciencedirect.com/science/article/pii/S0584854701001902
[7] SALLÉ B, LACOUR J L, VORS E, et al. Laser-induced breakdown spectroscopy for mars surface analysis:capabilities at stand-off distances and detection of chlorine and sulfur elements[J]. Spectrochimica Acta, 2004, B59(9):1413-1422. http://www.sciencedirect.com/science/article/pii/S0584854704001569
[8] NICOLAS G, MATEO M P, YAÑEZ A, The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes[J]. Applied Surface Science, 2007, 254(4):873-878. DOI: 10.1016/j.apsusc.2007.08.069
[9] FICHET P, MAUCHIEN P, WAGNER J F, et al. Quantitative elemental determination in water and oil by laser induced breakdown spectroscop[J]. Analytica Chimica Acta, 2001, 429(2):269-278. DOI: 10.1016/S0003-2670(00)01277-0
[10] CLEGG S M, SKLUTE E, DYAR M D, et al. Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques[J]. Spectrochimica Acta, 2009, B64(1):79-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cae5037ab9ebfa3852707e3489cfc0b5
[11] LAVILLE S, SABSABI M, DOUCET F R. Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration. Spectrochimica Acta, 2007, B62(12):1557-1566. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94c1d9e268c5763277cf89ad9c7a3f10
[12] ABDEL-SALAM Z, ABDELHAMID M, KHALIL S M, et al. LIBS new application:determination of metallic alloys surface hardness[J]. AIP Conference Proceedings, 2009, 1172(1):49-52. http://adsabs.harvard.edu/abs/2009AIPC.1172...49A
[13] TSUYUKI K, MIURA S, IDRIS N, et al. Measurements of concrete strength using the emission intensity ratio between Ca Ⅱ 396.8nm and Ca Ⅰ 422.6nm in a Nd:YAG laser induced plasma[J]. Applied Spectroscopy, 2006, 60(1):61-64. DOI: 10.1366/000370206775382668
[14] YAO Sh Ch. The application of laser induced breakdown spectroscopy for diagnosis of power station[D]. Guangzhou: South China University of Technology, 2011: 101-122(in Chinese).
[15] YAO S, LU J, CHEN K, et al. Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases[J]. Applied Surface Science, 2011, 257(7):3103-3110. DOI: 10.1016/j.apsusc.2010.10.124
[16] PAN Sh H, LU J D, YAO Sh Ch, et al. Impact of metallurgical structure on laser introduced steel plasma[J]. Chinese Journal of Lasers, 2010, 37(8):2126-2130(in Chinese). DOI: 10.3788/CJL
[17] DAI Y, LI J, LU J D, et al. Plasma characteristics of different microstructure of steel 12Cr1MoV[J]. Acta Optica Sinica, 2014, 34(3):0330003(in Chinese). DOI: 10.3788/AOS
[18] LI J Y, LU J D, LI J, et al. Laser-induced plasma spectra of heating surface materials with different hardnesses[J]. Chinese Journal of Lasers, 2011, 38(8):08185002(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JJZZ201108045.htm
[19] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. NIST atomic spectra database lines form[EB/OL].[2009-10-11].http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
[20] RUSSO R E, MAO X L, MAO S S. Peer reviewed:the physics of laser ablation in microchemical analysis[J]. Analytical Chemistry, 2002, 74(3):70-77. http://www.ncbi.nlm.nih.gov/pubmed/11838700
[21] MARTIN M Z, LABBÉ N, RIALS T G, et al. Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra[J]. Spectrochimica Acta, 2005, B60(7/8):1179-1185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8699c276235c79dd13536b4099fe1b0d
[22] MUNSON C A, de LUCIA F C, Jr, PIEHLER T, et al. Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants[J]. Spectrochimica Acta, 2005, B60(7/8):1217-1224. http://www.sciencedirect.com/science/article/pii/S0584854705001497
[23] KIM G, KWAK J, KIM K R, et al. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS)[J]. Journal of Hazardous Materials, 2013, 263(2):754-760. http://www.ncbi.nlm.nih.gov/pubmed/24231316