高级检索

基于粒子群优化算法的透射滤光片设计

高健, 王庆康, 王丹燕

高健, 王庆康, 王丹燕. 基于粒子群优化算法的透射滤光片设计[J]. 激光技术, 2018, 42(5): 617-621. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.007
引用本文: 高健, 王庆康, 王丹燕. 基于粒子群优化算法的透射滤光片设计[J]. 激光技术, 2018, 42(5): 617-621. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.007
GAO Jian, WANG Qingkang, WANG Danyan. Design of transmittance filters based on particle swarm optimization algorithm[J]. LASER TECHNOLOGY, 2018, 42(5): 617-621. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.007
Citation: GAO Jian, WANG Qingkang, WANG Danyan. Design of transmittance filters based on particle swarm optimization algorithm[J]. LASER TECHNOLOGY, 2018, 42(5): 617-621. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.007

基于粒子群优化算法的透射滤光片设计

详细信息
    作者简介:

    高健(1992-), 女, 硕士研究生, 现主要从事微纳光学方面的研究

    通讯作者:

    王庆康, E-mail:wangqingkang@sjtu.edu.cn

  • 中图分类号: TN253

Design of transmittance filters based on particle swarm optimization algorithm

  • 摘要: 为了优化器件的结构参量,把光栅结构的周期、高度、占空比作为优化的粒子,采用粒子群优化算法和严格耦合波分析算法,对粒子群中粒子的适应值进行了比较,对金属-介质光栅滤光片结构进行了理论分析和仿真优化,在一定范围内找到最优参量。结果表明,根据MATLAB仿真结果进行优化,得到周期为0.300μm,金属光栅厚度为0.035μm,介质光栅厚度为0.400μm,光栅占空比为0.77;在TM光垂直入射时,该结构对波长为0.65μm的红光透射率达到80.27%,旁带透射效率不超过15%;该结构实现了特定波长光的高效透射,从而实现了滤光。该结构为亚波长光栅的设计、制备研究和实际应用提供了参考。
    Abstract: In order to optimize the structure parameters of the device, the period, height and duty ratio of grating structure were taken as the optimized particles. By using particle swarm optimization algorithm and rigorous coupled wave analysis algorithm, fitness values of the particles in particle swarm were compared. After theoretical analysis and simulative optimization of the structure of metal-medium grating filter, the optimal parameters were found in a certain range. The results show that, according to MATLAB simulation results, structure parameters are optimized:period is 0.300μm, the thickness of metal grating is 0.035μm, the thickness of dielectric grating is 0.400μm and grating duty ratio is 0.77. When TM light is vertically incident, the transmission rate of structure to red light in 0.65μm wavelength is 80.27% and the transmission rate of the side bands is less than 15%. This structure achieves high transmission to specific wavelength light and then achieves light filtering. This structure provides the reference for the design, fabrication and practical application of sub-wavelength gratings.
  • Figure  1.   Schematic of subwavelength metal-medium filter with grating structure

    Figure  2.   Flow chart of particle swarm optimization algorithm

    Figure  3.   Relationship between fitness function and the iteration number

    Figure  4.   Relationship between transmission spectra of grating structure[2], the optimal structure and the target and wavelength

    Figure  5.   Relationship between transmission and wavelength for different grating structure parameters

  • [1]

    YE Y, ZHOU Y, ZHANG H, et al. Polarizing color filter based on micron metal grating[J].Acta Optica Sinica, 2011, 31(4):0405003(in Chinese). DOI: 10.3788/AOS

    [2]

    ZHOU Y. Design and Fabricate the color filter and the polarizer based on the subwavelength grating[D]. Suzhou: Soochow University, 2013: 10-28(in Chinese).

    [3]

    ZHOU W Ch, WU Y H, HAO P, et al. Transmission bandpass filters based on two-dimensional subwavelength metallic gratings[J]. Acta Optica Sinica, 2013, 33(11):1105001(in Chinese). DOI: 10.3788/AOS

    [4]

    KONG W J, ZHENG B B, YUN M J, et al. Guided-mode resonance filter with narrow waveband or three primary colors[J]. Acta Optica Sinica, 2011, 31(10):1005006(in Chinese). DOI: 10.3788/AOS

    [5]

    WANG S S, MAGUSSON R. Theory and applications of guided-mode resonance filter[J]. Applied Optics, 1993, 32(14):2606-2613. DOI: 10.1364/AO.32.002606

    [6]

    ZHENG H Y, HU F R, Design of narrowband guided-mode resonance filters in visible wavelength region[J]. Laser Technology, 2016, 40(1):118-121(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201601027.htm

    [7]

    SHOKOOH-SAREMI M, MAGNUSSON R. Particle swarm optimization and its application to the design of diffraction grating filters[J]. Optics Letters, 2007, 32(8):893-894. http://europepmc.org/abstract/MED/17375145

    [8]

    SHOKOOH-SAREMI M, MAGNUSSON R. Properties of two-dimensional resonant reflectors with zero-contrast gratings[J]. Optics Letters, 2014, 39(24):6958-6961. DOI: 10.1364/OL.39.006958

    [9]

    ORDAL M A, LONG L L, BELL R J, et al. Optical properties of the metals, Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared[J]. Appied Optics, 1983, 22(7):1099-1120. DOI: 10.1364/AO.22.001099

    [10]

    ZHANG G P, YE J X, LI Z G. Coupled-wave analysis of anti-reflective properties of binary phase grating[J]. Journal of Optoelectronics·Laser, 1996, 7(2):98-102(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-GDZJ602.006.htm

    [11]

    SONG D J, XIE K, XIAO J. Mode field and dispersion analysis of photonic crystal fiber based on finite element method[J]. Laser Technology, 2012, 36(1):111-114(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201201029.htm

    [12]

    TANG G J, WANG X L. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolloing bearing[J]. Journal of Xi'an Jiaotong University, 2015, 49(5):73-80(in Chinese).

    [13]

    DAI C, WANG Y Q, XU F. 3-D lidar echo decomposition based on particle swarm optimization[J]. Laser Technology, 2016, 40(2):284-287(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201602028.htm

    [14]

    YANG L Y. Research on vehicle routing problem based on modified particle swarm optimization algorithm[D]. Kaifeng: Henan University, 2011: 10-28(in Chinese).

    [15]

    ROBINSON J, RAHMAT-SAMⅡ Y. Particle swarm optimization in electromagnetics[J].IEEE Transactions on Antennas and Propagation, 2004, 52(2):397-407. DOI: 10.1109/TAP.2004.823969

    [16]

    ZHAO J R, YU Zh H, DU L. Particle swarm optimization algorithms in synthesis of fiber gratings for the non-dispersion filters in the optical communication[J]. Journal of Southern Yangtze University (Natural Science Edition), 2007, 6(1):69-71(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JLXY200701016.htm

    [17]

    DING Q L, ZHOU Y, YE Y, et al. Reflection characteristics of metal-dielectric-metal reflective-type color filter[J]. Journal of Applied Optics, 2012, 33(4):694-696(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YYGX201204011.htm

    [18]

    MA W T, ZHOU J, HUANG Sh P, et al. Characteristic of subwavelength dielectric grating with metal layer and its sensing applications[J]. Chinese Journal of Lasers, 2011, 38(9):0905008(in Chinese). DOI: 10.3788/CJL

    [19]

    BAI L F, HAN J, ZHANG Y, et al. Registration algorithm of infrared and visible images based on improved gradient normalized mutual information and particle swarm optimization[J]. Infrared and Laser Engineering, 2012, 41(1):250-252(in Chinese). http://www.cqvip.com/QK/91846A/201201/40872099.html

图(5)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-20
  • 修回日期:  2017-12-19
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回