高级检索

基于激光末端引导的无人机精确回收技术

缪欣, 张德斌, 宋余华, 张新兴, 梅扬妮, 杨文然, 熊金飞, 邵海军

缪欣, 张德斌, 宋余华, 张新兴, 梅扬妮, 杨文然, 熊金飞, 邵海军. 基于激光末端引导的无人机精确回收技术[J]. 激光技术, 2018, 42(5): 687-691. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.019
引用本文: 缪欣, 张德斌, 宋余华, 张新兴, 梅扬妮, 杨文然, 熊金飞, 邵海军. 基于激光末端引导的无人机精确回收技术[J]. 激光技术, 2018, 42(5): 687-691. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.019
MIAO Xin, ZHANG Debin, SONG Yuhua, ZHANG Xinxing, MEI Yangni, YANG Wenran, XIONG Jinfei, SHAO Haijun. UAV precise recycling technology based on laser terminal guidance[J]. LASER TECHNOLOGY, 2018, 42(5): 687-691. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.019
Citation: MIAO Xin, ZHANG Debin, SONG Yuhua, ZHANG Xinxing, MEI Yangni, YANG Wenran, XIONG Jinfei, SHAO Haijun. UAV precise recycling technology based on laser terminal guidance[J]. LASER TECHNOLOGY, 2018, 42(5): 687-691. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.019

基于激光末端引导的无人机精确回收技术

详细信息
    作者简介:

    缪欣(1969-), 男, 硕士, 研究员级高工, 研究方向为激光应用技术开发。E-mail:5308mx@sina.com

  • 中图分类号: TN249

UAV precise recycling technology based on laser terminal guidance

  • 摘要: 为了提高野外复杂环境下无人机回收的回收精度及回收成功率,采用了基于激光末端引导体制的无人机精确回收方法,对激光末端引导精确回收无人机系统的工作原理及流程进行了理论分析和验证,取得了无人机引导距离段与激光引导光场辐射场以及无人机偏航角度信息与系统精确回收之间的数据关系。结果表明,在距离着落点1km~2km的粗引导距离段,保持恒定40m的激光引导光场辐射场,可以使无人机快速进入激光辐射场调整偏航角度信息,提高回收的可靠性;在中间距离段,激光辐射场与着落距离按线性关系变化,有利于粗引导转入精确引导阶段;在距离着落点500m以内的精确引导距离段,保持20m的激光引导光场辐射场,可以提高无人机系统的回收精度。将该方案应用到无人机的回收系统中,可以显著提高无人机在复杂环境下的回收精度。
    Abstract: In order to improve the recycling precision and recycling rate of unmanned aerial vehicles (UAV) in complex environment, a precise recycling method of UAV based on laser terminal guidance was adopted. The principle and process of precise UAV recycling by means of laser terminal guidance were analyzed and verified. The relationship between the guide distance of UAV and laser guidance light radiation field and the relationship between yaw angle information of UAV departure and system precise recycling were discussed. The results show that in the range of rough guide distance of 1km to 2km from the landing point, keeping a constant laser guided field of 40m, the UAV can quickly enter the laser radiation field, adjust yaw angle information and improve the reliability of recycling. In the range of middle distance, the relationship between laser radiation field and landing distance changes linearly, which is beneficial for transferring from the rough guidance to the precise guidance. In the range of precise guide distance within 500m and constant laser guided field of 20m, the system can improve the precision of recycling. The scheme is applied to UAV recycling system, which can significantly improve the recycling precision of UAV in complex environment.
  • Figure  1.   Composition diagram of an accurate laser terminal guided UAV recycling system

    Figure  2.   Diagram of data interface of an UAV landing guidance system

    Figure  3.   Angle measurement by means of a four-quadrant photoelectric detector

    Figure  4.   Diagram of UAV landing guide process

    Figure  5.   Scheme diagram for precise laser guided UAV recycling

    Figure  6.   Relationship between divergence angle, window size and guidance distance

  • [1]

    USA DEPARTMENT OF DEFENSE. Dictionary of military and associated terms[M]. Washington DC, USA:Create Space Independent Publishing Platform, 2010:3.

    [2]

    LIU J G, LI Z L, YAN Sh B, et al. Military UAV development review and exhibition: the vanguard of wing[C]//The 3th Chinese UAV Assembly Papers. Beijing: Aviation Industry Press, 2010: 47-49(in Chinese).

    [3]

    AUSTIN R. Unmanned aircraft systems:UAVS design, development ad deployment[M]. New York, USA:John Wiley & Sons Ltd., 2010:15.

    [4]

    YANG F Y. UAV parachute drop recovery technology development: The vanguard of wing[C]//The 3th Chinese UAV Assembly Papers. Beijing: Aviation Industry Press, 2010: 819-822(in Chinese).

    [5]

    WANG H X, LIU Ch L, CHENG J. UAV recycling technology and its development[J]. Winged Missiles Journal, 2016(1):27-31(in Chinese).

    [6]

    FAHLSTROM P, GLEASON T J. Introduction to UAV systems[M].4th ed. New York, USA:John Wiley & Sons Ltd., 2012:1-276.

    [7]

    LIU J. Design and implementation of UAV parachute recovery systerm[J]. Command Control and Simulation, 2016, 38(6):109-112(in Chinese).

    [8]

    GOODMAN M, MORTIMER R. UAV integration aboard U.S. Navy Ships[EB/OL].[2017-11-07].https://www.researchgate.net/publication/268372474_UAV_Integration_Aboard_US_Navy_Ships.

    [9]

    ZHUANG X Y, CHEN Zh B. Current staratus and its developing trend of semiactive laser guided weapon[J]. Ship Electronics Engineering, 2011, 31(6):6-10(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jcdzgc201106002

    [10]

    LIN Zh H, WU B Y, WANG X B. Research on flight control system of fixed wing UAV crashing rope network recycling technology[J]. China Science and Technology, 2015(11):35(in Chinese).

    [11]

    LIU X T, DAI G L. Degren's precision guided weapon and precision guidance control technology[M]. Xi'an:Northwest Industrial University Press, 2009:181-185(in Chinese)。

    [12]

    LIANG W W, HUANG Zh Y, ZHANG W P, et al. Study on error signal of quadrant detectors in laser seekers[J]. Laser Technology, 2014, 38(4):569-573(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201404027

    [13]

    SUN X Y. A type of UAV autonomous landing section of the recovery[J]. Popular Science and Technology, 2008(4):120-121(in Chinese).

    [14]

    CHU Zh F, WANG D F, WANG J F, et al. A laser jamming strategy based on wave gate decoy[J]. Laser Technology, 2016, 40(6):779-781(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201606001.htm

    [15]

    SHAO X D, YAO H L, ZHANG Sh K, et al. Research of laser guided signal sorting and code recognition technique[J]. Laser Technology, 2011, 35(5):647-651(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201105020

    [16]

    LIU Ch A. Research on UAV route planning methods[D]. Xi'an: Northwest Industrial University, 2003: 3-15(in Chinese).

    [17]

    ZHOU Q. Study for net recovery system of laser guided UAV[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(6):300-302(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=djyzdxb200806087

    [18]

    AN J N, YAN H. Analysis on a certain type of UAV parachute recycling process and recycling strategy[J]. Aeronautical Computing Technique, 2014, 44(5):104-107(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkjsjs201405025

    [19]

    ZHANG D B, SONG Y H, WANG Q Sh, et al. Error analysis of laser divergence angle measurement[J]. Laser Technology, 2016, 40(6):926-929(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201606031.htm

图(6)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  2
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-07
  • 修回日期:  2018-02-08
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回