高级检索

基于粒子群算法的激光位移传感器参量优化

王晓蒙, 王会峰, 姚乃夫

王晓蒙, 王会峰, 姚乃夫. 基于粒子群算法的激光位移传感器参量优化[J]. 激光技术, 2018, 42(2): 181-186. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.008
引用本文: 王晓蒙, 王会峰, 姚乃夫. 基于粒子群算法的激光位移传感器参量优化[J]. 激光技术, 2018, 42(2): 181-186. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.008
WANG Xiaomeng, WANG Huifeng, YAO Naifu. Parameter optimization of laser displacement sensor based on particle swarm optimization algorithm[J]. LASER TECHNOLOGY, 2018, 42(2): 181-186. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.008
Citation: WANG Xiaomeng, WANG Huifeng, YAO Naifu. Parameter optimization of laser displacement sensor based on particle swarm optimization algorithm[J]. LASER TECHNOLOGY, 2018, 42(2): 181-186. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.008

基于粒子群算法的激光位移传感器参量优化

详细信息
    作者简介:

    王晓蒙(1992-), 女, 硕士研究生, 现主要从事智能检测技术的研究

    通讯作者:

    王会峰, E-mail:conquest8888@126.com

  • 中图分类号: TP212.1

Parameter optimization of laser displacement sensor based on particle swarm optimization algorithm

  • 摘要: 为了提高激光三角测距精度、优化传感器设计过程中的光学参量,采用数学建模和计算机辅助分析的方法,解析了激光三角测距传感器中的关键参量与测量系统各指标的关系,并采用一种基于粒子群算法的参量优化方法,得到符合系统优化要求的光学参量,进行了理论分析和验证。结果表明,在进行参量设计时,各参量相互牵制;确定了粒子群搜索空间和约束;在灵敏度Smin达到2.2386mm时,系统分辨力可达到2.8μm,且其它各参量取值符合系统要求,同时优化效率大大提高。该优化方法算法简单、操作方便。
    Abstract: In order to improve the precision of laser triangulation sensor and optimize the optical parameters of design process, through mathematical modeling and computer-aided analysis method, the relationship between key parameters of laser triangulation sensor and each index of measurement system was analyzed. A method of parameter optimization based on particle swarm algorithm was adopted. After theoretical analysis and experimental verification, the parameters to meet the requirements of optical system optimization were gotten. The results show that, the parameter is controlled by each other during designing. Search spaces and constraints of particle swarm are determined. When sensitivity Smin reaches 2.2386mm, the resolution of system can reach 2.8μm. Other parameters meet the system requirements, and the optimization efficiency is greatly improved. The optimization method is simple and convenient to operate.
  • Figure  1.   Working principle and imaging model

    Figure  2.   Relationship between each index and working distance

    a—sensitivity b—resolution c—measurement range d—horizontal width

    Figure  3.   Relationship between each index and working angle

    a—sensitivity b—resolution c—measurement range d—horizontal width

    Figure  4.   Relationship between each index and focal length of image lens

    a—sensitivity b—resolution c—measurement range d—horizontal width

    Figure  5.   Flow chart of parameter optimization

    Figure  6.   Function iteration graph

    a—sensitivity b—working distance c—working angle d—lens focal length

    Figure  7.   Comparison of resolution

    Table  1   The optimized results

    parameter optimization result
    S 2.2386mm
    k 0.0028mm
    a 61.2862mm
    b 115.1680mm
    α 25.2900°
    β 14.2971°
    f 40.0000mm
    下载: 导出CSV
  • [1]

    WU W, YAN L P.Laser displacement ranging system based on PSD[J]. Microcontrollers & Embedded Systems, 2016, 16(1):49-52(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xagyxyxb201801012

    [2]

    WANG X J, GAO J, WANG L. Survey on the laser triangulation[J]. Chinese Journal of Scientific Instrument, 2004, 25(4):601-604(in Chinese). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_bce771bb0d062b5d29d294421d1c6881

    [3]

    WU J B, LUO Q M.Biomedical applications of laser triangulation[J]. Laser Technology, 2006, 30(1):1-4(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200601001

    [4]

    ZHU Y X, ZHAO J, WANG Y L. Model establishment and parameter optimization of high precision laser ranging system[J]. Machinery, 2016, 54(7):68-71(in Chinese).

    [5]

    DEMEYERE M, RURIMUNZU D, EUGENE C. Diameter measurement of spherical objects by laser triangulation inall ambulatory context[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(3):867-872. DOI: 10.1109/TIM.2007.894884

    [6]

    JIN W Y, ZHAO H, TAO W. Modeling of laser triangulation sensor and parameters optimization[J]. Chinese Journal of Sensors and Actuators, 2006, 19(4):1090-1093(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cgjsxb200604040

    [7]

    SEN W X, FENG P, KE X, et al. Melt level measurement for the CZ crystal growth using an improved laser triangulation system[J]. Measurement, 2017, 103(5):27-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a81d866c136927453be22ec7f23408ec

    [8]

    EHLERT D, HORN H J, AME R. Measuring crop biomass density by laser triangulation[J]. Computers and Electronics in Agriculture, 2008, 61(2):117-125. DOI: 10.1016/j.compag.2007.09.013

    [9]

    XIE Zh J, ZHENG L J, QU Zh G.Improved PSO algorithm based PID controller of permanent magnet synchronous motor[J]. Modern Electronics Technique, 2017, 40(7):139-142(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddzjs201707037

    [10]

    WANG D F, MENG L. Performance analysis and parameter selection of PSO algorithms[J]. Acta Automatica Sinica, 2016, 40(10):1552-156(in Chinese).

    [11]

    DAI C, WANG Y Q, XUE F. 3-D lidar echo decomposition based on particle swarm optimization[J]. Laser Technology, 2016, 40(2):284-287(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201602028

    [12]

    RIWANTO B A, TIKKA T, KESTILA A. Particle swarm optimization with rotation axis fitting for magnetometer calibration.IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2):1009-1022. DOI: 10.1109/TAES.2017.2667458

    [13]

    LIU Zh X, LIANG H.Parameter setting and experimental analysis of the random number in particle swarm optimization algorithm[J]. Control Theory & Applications, 2010, 27(11):1489-1496(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201011007

    [14]

    ZHANG L P, YU J H, HU Sh X. Optimal choice of parameters for particle swarm optimization[J]. Journal of Zhejiang University Science A(Science in Engineering), 2005, 6A(6):528-534. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c627ddf56e11e750d4ed4ed07a5be5bb

    [15]

    ZHANG G Y, WU Y J. Multi-constraint optimization algorithm based on multistage punish function and particle swarm optimization[J]. Journal of Beijing Institute of Petrochemical Technology, 2008, 16(4):30-32(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsyhgxyxb200804008

图(7)  /  表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-24
  • 修回日期:  2017-06-27
  • 发布日期:  2018-03-24

目录

    /

    返回文章
    返回