Constant temperature control systems for semiconductor lasers based on DRV595
-
摘要: 半导体激光器的输出波长和功率随温度变化而变化,为了确保激光器工作性能,须对其进行恒温控制。采用脉冲宽度调制功率驱动器DRV595驱动半导体制冷器的方法,设计了一种双向大电流输出的高精度温度控制系统。在S域对系统进行了建模分析,搭建经典比例-积分-微分控制器,采用桥式采样电阻,纯硬件电路实现,结构简单,省掉了数字控制器的复杂软件编写。在常温试验中取得了±0.03℃的控制精度,DRV595集成脉冲宽度调制和双向MOSFET,输出电流最大为±4A。双向电流驱动半导体热电制冷器,实现了无死区控制。结果表明,脉冲宽度调制方式驱动和低输出级电阻大大降低了功率耗散。该系统工作稳定、功耗低、控制精度较高,具有实用价值。Abstract: The output wavelength and power of a semiconductor laser varied with the temperature. In order to ensure the performance of laser, constant temperature must be controlled. A high precision temperature control system of bidirectional high current output was designed by using pulse width modulation power driver DRV595 to drive the semiconductor cooler. In the S domain, the system was modeled and analyzed, and the classical proportional-integral-differential controller was built. The bridge type sampling resistor was adopted to realize the pure hardware circuit. The structure was simple, and the complex software of the digital controller was omitted. After normal temperature test, the control accuracy of ±0.03℃ was achieved. Pulse width modulation and bidirectional MOSFET were integrated in DRV595. The biggest output current was ±4A. No-dead-time control was realized by using bi-directional current to drive semiconductor cooler. The results show that pulse width modulation mode drive and low output stage resistor greatly reduce power dissipation. The system has the advantages of stable operation, low power consumption, high control accuracy and practical value.
-
-
Table 1 Pin definition and function
name of pin description SDZ shutdown logic input IN+, IN- positive and negative differential input GND ground Hi-Z input for fast disable/enable of outputs FS2, FS1, FS0 frequency selection input SYNC clock input/output for synchronizing multiple devices PVCC power supply BSP, BSN boot strap for negative and output OUTP, OUTN output Table 2 Temperature of laser diode
time/min temperature/℃ 2 24.983 4 24.982 6 24.999 8 24.010 10 25.019 12 25.018 14 25.023 16 25.021 18 25.029 20 25.028 22 25.014 24 25.023 26 25.010 28 25.014 30 25.025 32 25.004 34 25.021 36 25.007 38 25.015 40 24.99 -
[1] ZHAO G, LI J, PENG X J, et al. Compact repetitive diode-pumped slab lasers without thermoelectric coolers[J]. Laser Technology, 2016, 40(5):625-628(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201605002
[2] REN W B, DONG Sh Y, XU B Sh, et al.Research advance and development of laser remanufacture closed-loop control systems[J]. Laser Technology, 2016, 40(1):103-108(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201601024
[3] CHEN W, YANG Zh, ZHANG W.Design of high precision laser temperature control circuit[J]. Laser Technology, 2014, 38(5):669-674(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201405020.htm
[4] LIAO Zh Y, DENG H F, WU L H, et al. Design of high precision constant temperature control systems based on laser diodes[J]. Laser Technology, 2012, 36(6):771-775(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201206014.htm
[5] XU G P, FENG G X, GENG L.Temperature control of high density TEC based on MCU operation[J]. Laser & Infrared, 2009, 39(3):254-256(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgyhw200903006
[6] YUAN J G, ZHAN Ch, LI X G, et al. Accurate controlling system of the output and frequency for laser diodes[J]. Laser Technology, 2014, 30(6):650-663(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200606029
[7] FANG L H, WEN J G, JIANG Y Ch, et al. Design of a temperature control system for semiconductor laser based on digital filtering[J]. Laser Technology, 2016, 40(5):701-705(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201605017.htm
[8] WANG Z Q, DUAN J, ZENG X Y. Research of precise temperature control systems of high -power semiconductor lasers[J]. Laser Technology, 2015, 39(3):353-356(in Chinese).
[9] GAO P D, ZHANG F Q.Design and implementation control system for high precision temperature of semiconductor lasers[J]. Laser Technology, 2014, 38(2):353-356(in Chinese).
[10] LÜ F, GAO F, ZHENG Q, et al. Application of temperature control system based on AND8831 in laser[J]. Journal of Hefei University of Technology, 2011, 34(7):1096-1099(in Chinese). http://www.cabdirect.org/abstracts/20113255501.html
[11] JIANG H L. Design of thermostat system for high power semiconductor laser[J]. Semiconductor Optoelectronics, 2004, 25(4):320-322(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtgd200404020
[12] WANG X Z, HOU H Y, ZHAI Zh Sh, et al. Mathematical modeling and parameter identidication of temperature control system based on thermoelectric[J]. Laser Technology, 2015, 39(6):789-793(in Chinese).
[13] YAN S, LI D G, YU Zh L. Research on the simulation of temperature control of semiconductor laser based on ADRC[J]. Industrial Instrumentation and Automation, 2013(1):3-5(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyybyzdhzz201301001
[14] LI Q. Study on temperature control system of laser diode[D]. Qinhuangdao: Yanshan University, 2010: 15-25(in Chinese).
[15] MAXIM INTEGRATED PRODUCTS INC. MAX1978/MAX1979 integrated temperature controller for peltier modules[EB/OL]. (2003-05-10)[2016-10-30]. http://www.maximintegrated.com.
[16] TEXAS INSTRUMENTS. 15V/±4A high-efficiency PWM power driver (Rev. A)[EB/OL]. (2013-05-13)[2016-10-30]. http://www.ti.com.cn.