高级检索

基于改进的奇异值分解的红外弱小目标检测

冯洋

冯洋. 基于改进的奇异值分解的红外弱小目标检测[J]. 激光技术, 2016, 40(3): 335-338. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.007
引用本文: 冯洋. 基于改进的奇异值分解的红外弱小目标检测[J]. 激光技术, 2016, 40(3): 335-338. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.007
FENG Yang. Detection of dim and small infrared targets based on the improved singular value decomposition[J]. LASER TECHNOLOGY, 2016, 40(3): 335-338. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.007
Citation: FENG Yang. Detection of dim and small infrared targets based on the improved singular value decomposition[J]. LASER TECHNOLOGY, 2016, 40(3): 335-338. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.007

基于改进的奇异值分解的红外弱小目标检测

基金项目: 

国家自然科学基金资助项目(61401343);陕西省教育厅科学基金资助项目(14JK1247);陕西省军民融合研究基金资助项目(13JMR14);渭南师范学院特色学科资助项目(14TSXK07)

详细信息
    作者简介:

    冯洋(1982-),女,讲师,硕士,主要研究方向为红外弱小目标的检测与跟踪。E-mail:fengyang1982@163.com

  • 中图分类号: TN911.73

Detection of dim and small infrared targets based on the improved singular value decomposition

  • 摘要: 为了克服传统的基于奇异值分解的目标检测方法存在目标强度变弱的不足之处,采用改进的奇异值分解方法用于红外弱小目标检测。根据奇异值分解的性质,对其中目标贡献最大的中序部分奇异值进行了非线性修正的改进,并将其它奇异值设置为零后通过重构图像得到背景抑制后的目标图像。结果表明,该方法不仅能够保存和增强目标能量,提高目标信号的信杂比和对比度,而且还能得到很好的背景抑制效果。
    Abstract: In order to solve the problem of target strengh weakness of traditional target detection method based on singular value decomposition (SVD), an improved SVD algorithm was proposed for background suppression in dim and small infrared target detection. According to the nature of SVD, nonlinear transformation was adopted to improve the middle order part of image singular values for the largest contribution to the goal. And then, the other singular value was set to zero,finally the target image was obtained by reconstructing image. The experimental results show that the proposed method could preserve and enhance the target signal, improve the signal-to-clutter ratio and contrast ratio,and have good performance in complicated background suppression.
  • [1]

    PENG J X, ZHOU W L. Infrared background suppression for segmenting and detecting small target[J]. Acta Electronica Sinica, 1999, 27(12):47-51(in Chinese).

    [2]

    ERCELEBI E, KOC S. Lifting-based wavelet domain adaptive wiener filter for image enhancement[J].IEEE Proceedings, Vision, Image and Signal Processing, 2006, 153(1):31-366.

    [3]

    QIN H L, LIU Sh Q, ZHOU H X, et al. Background suppression for dim small target with Gabor kernel non-local means[J].Infrared and Laser Engineering, 2009,38(4):737-741(in Chinese).

    [4]

    ZHANG Y, XIN Y H, ZHANG Ch Q.An algorithm based on temporal and spatial filters for infrared weak slow moving point target detection[J]. Acta Photonia Sinica, 2010, 39(11):2049-2054(in Chinese).

    [5]

    MA W W, DIAO Y J, ZHANG G H. Infrared dim target detection based on multi-structural element morphological filter combined with adaptive threshold segmentation[J]. Acta Photonia Sinica, 2011, 40(7):1020-1024(in Chinese).

    [6]

    JIANG T, SHEN H L, YANGD D X, et al. Target detection of the images based on C-means of fuzzy local information[J]. Laser Technology, 2015, 39(3):289-294 (in Chinese).

    [7]

    QIN H L, ZHOU H X, LIU Sh Q, et al. SVD for infrared dim and small target background suppression[J]. Semiconductor Optoelectronics, 2009, 30(3):473-476(in Chinese).

    [8]

    LV D Y. Research on SVD in digital watermark and infrared small target preprocessing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2011:41-46(in Chinese).

    [9]

    HU M F, DONG W J, WANG Sh H, et al. Singular value decomposition band-pass-filter for image background suppression and denoising[J].Acta Electronica Sinica, 2008, 36(1):111-116(in Chinese).

    [10]

    CUI L J, ZHENG J B, LI X X. Detecting small targets based on SVD for background suppression and particle filter[J]. Application Research of Computers, 2011, 28(4):1553-1555(in Chinese).

    [11]

    MO J H, XI R P, ZHANG Y N, et al. Global filter combined with local filter for infraredsmall target background suppression[J]. Chinese Journal of Stereology and Image Analysis, 2011, 16(3):223-231(in Chinese).

    [12]

    LI J L. An introduction of the SVD algorism and its test of artificial data[J]. Annals of Shanghai Observatory Academia Sinca, 1998(19):16-21(in Chinese).

    [13]

    ZHANG X D. Matrix analysis and application[M]. Beijing:Tsinghua University Press, 2004:341-400(in Chinese).

    [14]

    ZHANG L, LUO Ch G, ZHANG YY, et al. Fusion algorithm of infrared and visible images based on support value transform[J]. Laser Technology, 2015, 39(3):428-431(in Chinese).

计量
  • 文章访问数:  10
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-26
  • 修回日期:  2015-06-14
  • 发布日期:  2016-05-24

目录

    /

    返回文章
    返回