Research of photoacoustic spectroscopy effect of ethylene concentration detected by laser
-
摘要: 为了解决生物医疗、石油化工行业微量乙烯浓度难以检测的问题,采用CO2激光击穿装有乙烯气体的光声池产生光声光谱效应,进行了微量乙烯浓度的检测,设计并优化了光声池尺寸,研究了激光谱线10P(16)和10P(18)与乙烯吸收系数、乙烯气体浓度与光声信号之间的关系。结果表明,光声光谱气体检测系统的共振中心频率为833Hz,品质因数为20.8,光声池常数为2323Pacm/W;当激光功率为3.6W时,在两种激光谱线的照射下,光声信号与乙烯气体体积分数之间均成良好的线性关系,其线性拟合优度分别为0.99744和0.99802,系统的最低检测浓度可达0.9nmol/L。实验结果与理论分析相吻合,验证了光声光谱效应对微量乙烯浓度的检测具有良好的应用价值。Abstract: In order to solve the problem of ethylene detection of trace concentration in biomedical, petrochemical industry, CO2 laser was used to excite photoacoustic spectroscopy effect in photoacoustic cell for ethylene concentration detection. Parameters of photoacoustic cell was designed and optimized. The relationship between laser lines 10P(16), 10P(18) and ethylene absorption coefficient was investigated, and the link of ethylene concentration and photoacoustic signal was studied. Through theoretical analysis and experimental research, the results show that parameters of photoacoustic system are: center of resonant frequency of 833Hz, quality factor of 20.8, and photoacoustic cell of 2323Pacm/W. When laser power is 3.6W, photoacoustic signal and ethylene volume fraction get good linear relationship under the irradiation of two laser spectrum. Linear fit is 0.99744 and 0.99802 respectively. The minimum detectable concentration of system is 0.9nmol/L. Experimental results and theoretical analysis verify the effect of photoacoustic spectroscopy detection of trace concentrations of ethylene has good appliciation value.
-
-
[1] WANG C J, SAHAY P. Breath analysis using laser spectroscopic techniques:breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors, 2009, 9(10):8230-8262.
[2] ARAKELIAN V G. The long way to the automatic chromatographic analysis of gases dissolved in insulating oil[J]. Electrical Insulation Magazine, 2004, 20(6):8-25.
[3] ZHOU L J, WU G N, TANG P, et al. Model of semiconductor gas sensor for monitoring dissolved gases in insulation oil[J]. Automation of Electric Power Systems, 2006, 30(10):75-79 (in Chinese).
[4] LI H L, ZHOU F J, TAN K X, et al. Quantitative analysis of FTIR-used intransformer on-line monitoring[J]. Automation of Electric Power Systems, 2005, 29(18):62-65 (in Chinese).
[5] KERR E L, ATWOOD J G. The laser illuminated absorptivity spectrophone:a method for measurement of weak absorptivity in gases at laser wavelengths[J]. Applied Optics, 1968, 7(5):915-921.
[6] LI J S, CHEN W D, YU B L, et al. Recent progress on infrared photoacoustic spectroscopy techniques[J]. Applied Spectroscopy Reviews, 2011, 46(6):460-471.
[7] YUN Y X, ZHAO X X, CHEN W G,et al. Acetylene detection by laser resonant photoacoustic spectrometry[J]. Voltage Engineering, 2009, 35(9):184-190 (in Chinese).
[8] LIN C, ZHU Y, WEI W, et al. Quartz-enhanced photoacoustic spectroscopy trace gas detection system based on the Fabry-Perot demodulation[J]. Spectroscopy and Spectral Analysis, 2013, 33(5):1163-1166(in Chinese).
[9] TANS, LIU W F, WANG L J, et al. Mid-infrared distributed-feedback quantum cascade laser-basedphotoacoustic detection of trace methane gas[J]. Spectroscopy and Spectral Analysis, 2012, 32(5):1251-1254(in Chinese).
[10] MIKLOS A, HESS P, BOZOKI Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology[J]. Review of Scientific Instruments, 2001, 72(4):1937-1955.
[11] DUMITRASD D C, DUTU D C, MATEL C, et al. Laser photoacoustic spectroscopy:principles, instrumentation, and characterization[J]. Journal of Optoelectronics and Advance Materials, 2007, 9(12):3655-3701.
[12] TAVAKOLI M, TAVAKOLI A, TAHERI M. Design, simulation and structural optimization of a longitudinal acoustic resonator for trace gas detection using laser photoacoustic spectroscopy[J]. Optics and Laser Technology, 2010, 42(5):828-838.
-
期刊类型引用(16)
1. 蒋成成,宋庆雷,张平,柳学强,沈承金. 等离子熔覆FeCoCrNiAl_(0.5)Ti_(0.5)高熵合金涂层的组织及耐磨性能. 机械工程材料. 2024(10): 1-8 . 百度学术
2. 张世钦,周娟,刘弘,朱永刚,蒋兆煌,孔令昊. 27SiMn钢表面激光熔覆FeCoCrNiMo_(0.75)高熵合金涂层组织与耐磨性能. 机械工程师. 2024(11): 95-98 . 百度学术
3. 王伟,陈田慧,单旭光,毕志江,刘伊,刘康诚,周吉,娄丽艳,李成新. 激光熔覆高熵合金涂层组织结构及强化机理研究进展. 热喷涂技术. 2023(04): 31-51 . 百度学术
4. 夏铭,孙博,王鑫,梁秀兵,沈宝龙. 高熵合金增材制造研究现状与展望. 材料导报. 2021(13): 13119-13127 . 百度学术
5. 张志虎,孙文磊,黄勇,刘金朵. 高速激光熔覆和重熔复合技术制备铁基涂层的组织性能研究. 激光与光电子学进展. 2021(21): 206-213 . 百度学术
6. 张富祯,孙文磊,王恪典,张冠. 面向薄壁件的激光熔覆修复工艺参数优化研究. 表面技术. 2019(01): 168-174 . 百度学术
7. 何昱煜,刘益剑,陈明,黄无云,戴鑫,毛建良,徐泽玮. 激光扫描速率与熔覆层组织性能的规律研究. 激光技术. 2019(02): 201-204 . 本站查看
8. 魏民,万强,李晓峰,朱方涛,黄永俊,杨兵. 熔覆电流对FeCoCrNiMn高熵合金涂层组织与性能的影响. 表面技术. 2019(06): 138-143 . 百度学术
9. 李凌宇,石岩,李镇. 激光沉积铁基涂层微观组织与耐磨性能研究. 长春理工大学学报(自然科学版). 2018(04): 25-30 . 百度学术
10. 谢锐波,廖一峰. 复合镀层激光热处理过程汽车模具配件磨损性能测试. 激光杂志. 2018(09): 82-85 . 百度学术
11. 刘鹏良,孙文磊,王恪典,黄海博. 扫描速率对激光熔覆镍基合金涂层性能的影响. 激光技术. 2018(06): 845-848 . 本站查看
12. 向硕,张雷,刘学,乐国敏,戴晓军,李强,李晋锋. 激光熔化沉积工艺对CrMnFeCoNi高熵合金组织和性能的影响. 材料热处理学报. 2018(10): 29-35 . 百度学术
13. 邱星武,刘春阁,张云鹏. 激光熔覆Al_2CoCrCuFeNi_xTi高熵合金涂层的组织及性能. 激光与光电子学进展. 2017(05): 267-273 . 百度学术
14. 黄海博,孙文磊,黄勇,陈影. 自由曲面熔覆路径的点云切片算法研究. 激光技术. 2017(05): 718-722 . 本站查看
15. 陈顺高,张晓明,郑启池,李瑞峰. CeO_2对激光熔覆Ni60合金涂层组织及性能的影响. 激光技术. 2017(06): 904-908 . 本站查看
16. 杨钢,严继康. 2016年云南金属材料与加工年评. 云南冶金. 2017(02): 86-104 . 百度学术
其他类型引用(14)
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 4
- 被引次数: 30