Change of surface integrity of Ti-6Al-4V titanium alloy by laser shock processing at middle and high temperatures
-
摘要: 为了研究中高温条件下激光冲击处理对Ti-6Al-4V钛合金的表面完整性的影响,采用高功率、短脉冲Nd:YAG激光器对Ti-6Al-4V钛合金表面进行激光冲击,并将冲击后的钛合金试样分别置于400℃,500℃,550℃和600℃的温度下进行保温处理。从表面形貌、表面粗糙度、表面残余应力等方面分析了中高温条件下激光冲击处理对Ti-6Al-4V钛合金的表面完整性的影响。结果表明,激光冲击处理增大了Ti-6Al-4V钛合金的表面粗糙度,且热处理温度越高,Ti-6Al-4V钛合金的表面粗糙度越大;激光冲击处理显著提高了Ti-6Al-4V钛合金材料的表面残余压应力,随着温度的升高,残余压应力值降低。研究结果对了解和掌握Ti-6Al-4V钛合金的使用性能是有帮助的。
-
关键词:
- 激光技术 /
- 表面完整性 /
- 中高温 /
- Ti-6Al-4V钛合金
Abstract: In order to study effect of laser shock processing (LSP) on surface integrity of Ti-6Al-4V titanium alloy at middle and high temperatures, a high power short pulse Nd:YAG laser was used to shock the surface of Ti-6Al-4V titanium alloy. And then, the specimens after LSP were held at 400℃, 500℃, 550℃ and 600℃ respectively for one hour. The influence of LSP on surface integrity of Ti-6Al-4V titanium alloy at middle and high temperatures were analyzed from surface morphology, surface roughness and surface residual stress. The results indicate that LSP increases the surface roughness of Ti-6Al-4V titanium alloy. The surface roughness increases with the increase of heat treatment temperature. The surface residual stress of Ti-6Al-4V titanium alloy increases obviously after LSP. The higher the temperature, the smaller the surface residual stress is. The research results are helpful for understanding the performance of Ti-6Al-4V titanium alloy. -
-
[1] HUANG X, LI Zh X, HUANG H. Recent development of new high-temperature titanium alloys for high thrust-weight ratio aero-engines[J]. Materials China,2011,30(6):20-27(in Chinese).
[2] BI X G, BU F L, KANG J. Titanium alloy drilling and new development[J]. Tool Engineering,2008,42(12):19-22(in Chinese).
[3] HACKEL L A, CHEN H L. Laser peening-A processing tool to strengthen metals or alloys to improve fatigue lifetime and retard stress-induced corrosion cracking[M]. Berlin,Germany:Springer-Verlag,2003:1058-1061.
[4] LI L, SUN J K, MENG X J. Development and application of titanium alloy[J]. Titanium Industry Progress,2004,21(5):19-23(in Chinese).
[5] MONTROSS C S, TAO W, LIN Y, et al. Laser shock processing and its effects on micro-structure and properties of metal alloys:a review[J]. International Journal of Fatigue, 2002, 24(2):1021-1036.
[6] ZHANG Y K, CHEN J F, XU R J. Experimental research of laser shock strengthening AM50 magnesium alloy[J]. Chinese Journal of Lasers, 2008, 35(7):1068-1072(in Chinese).
[7] REN X D, ZHANG T, ZHANG Y K, et al. Improving fatigue properties of 00Cr12 alloy by laser shock processing[J]. Chinese Journal of Lasers,2010, 37(8):2111-2115(in Chinese).
[8] PEI X, REN A G, GU Y Y, et al. Effects of laser shock processing on mechanical properties of AZ91 magnesium alloy[J]. Laser Technology, 2010, 34(4):552-556(in Chinese). WANG D Sh, TIAN Z J, SHEN L D, et al. Research states of laser surface modification technology on titanium alloys.Laser Optoelectronics Progress,2008,45(6):24-32(in Chinese). SUN Z C, SUN H L, HUANG Z W, et al. Research progress on surface oridation resistant modification technology of tanium alloy.Materials Review,2011,5(17):507-509(in Chinese).
[9] YU K G, XIANG B L, QING X Y. Influence of surface integrity on fatigue strength of 40CrNi2Si2MoVA steel[J].Material Letters, 2007, 61(1/2):466-469.
[10] HUANG Sh, ZHOU J Zh, SUN Y Q, et al. Study on surface integrity of 6061-T6 aluminum alloy sheet after laser shot peening[J]. Applied Laser,2007,27(6):450-455(in Chinese).
[11] LIU X L, AN Zh X, DING Zh M, et al. Effect of high temperature oxidation treatment on the surface morphology and properties of valve steel[J]. Locomotive Rolling Stock Technology, 2007,18(1):8-12(in Chinese).
[12] GUO B G, LIANG J, CHEN J M, et al. Effects of oxidation time on micro-structure and performance of micro-arc oxidation coatings formed on Ti-6Al-4V alloy[J]. Chinese Journal of Nonferrous Metals, 2005, 15(6):982-984(in Chinese).
[13] REN X D, RUAN L, HUANG F Y, et al. Experimental research of laser shock processing 6061-T651 aluminum alloy during elevated temperature[J]. Chinese Journal of Lasers,2012, 39(3):1231-1234(in Chinese).
[14] ELIEZER S, RAICHER N N E, MARTINEZ-VAL J M. Relativistic shock waves induced by ultra-high laser pressure[J]. Laser and Particle Beams, 2014, 32(2):243-251.
[15] LU Ch L, HU F Y, HUANG X R, et al. Numerical simulation of temperature and stress field of metal plates irradiated by pulsed laser[J]. Laser Technology, 2012,36(6):754-758(in Chinese).
[16] JUIJERM P, ALTENBERGER I. Residual stress relaxation of deep-rolled Al-Mg-Si-Cu alloy during cyclic loading at elevated temperatures[J]. Scripta Materialia, 2006,55(12):1111-1114.
[17] WANG X F, PAN A X. Experimental study of residual stress with laser shock on TC4 alloy[J]. Inner Mongolia Science Technology Economy, 2010, 222(20):106-108(in Chinese).
[18] REN X D, ZHANG Y K, ZHOU J Zh, et al. Laser shock processing effects on mechanical properties of Ti6A14V alloy[J]. Functional Materials, 2006, 37(11):1781-1783(in Chinese).
-
期刊类型引用(12)
1. 王伟华,高梓航,王一,蔡小培. 高速铁路大跨桥梁端钢轨伸缩调节器监测技术. 中国铁路. 2024(09): 187-194 . 百度学术
2. 杨雅熙,罗金,金涛. 基于线结构光-机器视觉的CHN钢轨轨距动态检测方法. 中国测试. 2023(09): 91-98 . 百度学术
3. 程嘉昊,厉小润,王森荣,王晶,林超. 基于视觉定位的钢轨伸缩调节器伸缩量测量. 工业控制计算机. 2022(05): 64-66+69 . 百度学术
4. 崔雅婷,王鹏,李吉民,凡勇刚,詹浩东,任高峰,张聪瑞. 地下矿山有轨运输非接触式动态轨距检测系统设计与实现. 中国矿业. 2021(08): 97-102 . 百度学术
5. 张光跃,马增强,苑佳靖,康德,闫德立,李俊峰. 基于轮轨相对横移的轨距检测方法研究. 光电工程. 2020(02): 48-55 . 百度学术
6. 刘子英,张靖,邓芳明. 基于位置敏感探测器的轨距在线监测系统研究. 激光技术. 2020(02): 183-189 . 本站查看
7. 高昂,柴晓冬,李立明. 基于激光传感器的轨距测量系统研究. 智能计算机与应用. 2020(02): 240-244+249 . 百度学术
8. 李颖,王昊,侯智雄,赵延峰,杜馨瑜,魏世斌,任盛伟. 基于控制器局域网总线的车载轨道检测系统设计研制. 中国铁道科学. 2020(04): 163-170 . 百度学术
9. 郑新建,刘玲玲. 基于激光传感器采集信息的电气设备状态分析研究. 激光杂志. 2019(07): 179-183 . 百度学术
10. 史红梅,许明,余祖俊. 基于最小二乘法曲线拟合的轨距参数测量方法. 铁道学报. 2019(12): 81-88 . 百度学术
11. 熊仕勇,陈春俊,王锋,林严. 一种新的轨距动态检测方法研究. 铁道科学与工程学报. 2018(07): 1825-1831 . 百度学术
12. 罗磊,王培俊,李文涛,唐晓敏. 一种尖轨轮廓无损检测方法研究. 激光杂志. 2018(02): 34-38 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 7
- HTML全文浏览量: 0
- PDF下载量: 8
- 被引次数: 21