高级检索

少模光纤通信频域均衡中的大点数FFT设计

黄战华, 赵宇璐, 李桂芳, 王云立

黄战华, 赵宇璐, 李桂芳, 王云立. 少模光纤通信频域均衡中的大点数FFT设计[J]. 激光技术, 2016, 40(2): 161-165. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.003
引用本文: 黄战华, 赵宇璐, 李桂芳, 王云立. 少模光纤通信频域均衡中的大点数FFT设计[J]. 激光技术, 2016, 40(2): 161-165. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.003
HUANG Zhanhua, ZHAO Yulu, LI Guifang, WANG Yunli. Long point FFT design for frequency domain equalization of few-mode fiber communication[J]. LASER TECHNOLOGY, 2016, 40(2): 161-165. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.003
Citation: HUANG Zhanhua, ZHAO Yulu, LI Guifang, WANG Yunli. Long point FFT design for frequency domain equalization of few-mode fiber communication[J]. LASER TECHNOLOGY, 2016, 40(2): 161-165. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.003

少模光纤通信频域均衡中的大点数FFT设计

基金项目: 

国家九七三重点基础研究发展计划资助项目(2014CB340100)

详细信息
    作者简介:

    黄战华(1965-),男,博士,教授,主要从事光电图像和光电子信息技术等方面的教学和科研工作。E-mail:zhanhua@tju.edu.cn

  • 中图分类号: TN929.11

Long point FFT design for frequency domain equalization of few-mode fiber communication

  • 摘要: 为了减小频域均衡系统电路实现的功耗和面积,满足长距离少模光纤通信对均衡器的要求,对关键环节快速傅里叶变换(FFT)电路的实现进行了研究,采用2维分解算法将大点数的FFT运算转换为小点数FFT处理器的设计,降低了硬件复杂度。设计了基于现场可编程门阵列的高速蝶形运算核,实现了16384点FFT的2维R22SDF结构,提高存储器的资源利用率,减少了复数乘法器的使用;进行了理论分析和实验验证,取得了不同时钟频率下的电路结构占用资源的数据。结果表明,FFT运算器的正确性得到验证,该FFT运算器能够适应少模光纤通信系统中优化频域均衡电路结构的要求,能够实现200MHz数据传输速度的频域均衡实时处理。
    Abstract: To reduce the circuit's power and size of frequency domain equalization (FDE) system, and meet the requirements of FDE in long-distance few-mode fiber communication, the circuit for fast Fourier transformation (FFT), the key of FDE, was studied. The long point FFT operation was converted to short FFT by means of 2-D decomposition algorithm, and the hardware complexity was reduced. High-speed butterfly core based on field-programmable gate array(FPGA) was designed to implement 2-D R22SDF structure of 16384 point FFT, improve the resource utilization of memory and reduce the usage of complex multipliers. Through theoretical analysis and experiments, resource consumption information of the circuit under different clock frequencies was collected. The result show that the designed FFT can satisfy the optimization requirement of FDE circuit structure in few-mode fiber communication and realize real-time processing of 200MHz data speed in FDE.
  • [1]

    GRNER-NIELSEN L, SUN Y I, NICHOLSON J W, et al. Few mode transmission fiber with low DGD, low mode coupling, and low loss[J]. Journal of Lightwave Technology, 2012, 30(23):3693-3698.

    [2]

    FERREIRA F, FONSECA D, LOBATO A, et al. Reach improvement of mode division multiplexed systems using fiber splices[J]. IEEE Photonics Technology Letters, 2013, 25(12):1091-1094.

    [3]

    CAO X. Optimization of dispersion compensation in optical fiber communication systems[J]. Laser Technology, 2014, 38(1):101-104(in Chinese).

    [4]

    RYF R, RANDEL S, GNAUCK A H, et al. Mode-division multiplexing over 96km of few-mode fiber using coherent 66 MIMO processing[J]. Journal of Lightwave Technology, 2012, 30(4):521-531.

    [5]

    FARUK M S, KIKUCHI K. Adaptive frequency-domain equalization in digital coherent optical receivers[J]. Optics Express, 2011, 19(13):12789-12798.

    [6]

    BAI N. Mode-division multiplexed transmission in few-mode fibers[D]. Orlando,Florida,USA:University of Central Florida Orlando, 2013:9-20.

    [7]

    BAI N, IP E, LI M J, et al. Long-distance mode-division multiplexed transmission using normalized adaptive frequency domain equalization[C]//IEEE Photonics Society Summer Topical Meeting Series. New York, USA:IEEE, 2013:135-136.

    [8]

    BAI N, LI G F. Adaptive frequency-domain equalization for mode-division multiplexed transmission[J]. IEEE Photonics Technology Letters, 2012, 24(21):1918-1921.

    [9]

    BAI N, IP E, HUANG Y K, et al. Mode-division multiplexed transmission with inline few-mode fiber amplifier[J]. Optics Express, 2012, 20(3):2668-2680.

    [10]

    YAMAN F, BAI N, ZHU B Y, et al. Long distance transmission in few-mode fibers[J]. Optics Express, 2010, 18(12):13250-13257.

    [11]

    HE H, KE X Zh, WANG W. Particle filtering based semi-blind estimation for atmospheric laser OFDM time-varying channel[J]. Laser Technology, 2011, 35(6):738-741(in Chinese).

    [12]

    LI S M, CHEN Y, ZENG X Y. FFT/IFFT processor for MIMO-OFDM[J]. Computer Engineering, 2012, 38(2):248-249(in Chinese).

    [13]

    JIANG X, TANG G, WU B. Design of configurable high precision FFT/IFFT Processor[J]. Micro Electronics and Computer, 2010(7):44-48(in Chinese).

    [14]

    WANG X Y. Implementation of wavelet denoising algorithm based on FPGA[J]. Laser Technology, 2013, 37(6):786-790(in Chinese).

    [15]

    ZHANG L J. Research on FPGA parallel implementation of two-dimension long FFT algorithm[J]. Radio Communications Technology, 2013, 39(3):86-88(in Chinese).

    [16]

    LI W, SUN J P, WANG J, et al. Implementation of 32k points ultrahigh speed FFT processor based on FPGA devices[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 33(12):1440-1443(in Chinese).

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-29
  • 修回日期:  2015-03-31
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回