高级检索

基于相位一致性改进的活动轮廓分割模型

郑伟, 张晶, 李凯玄, 郝冬梅

郑伟, 张晶, 李凯玄, 郝冬梅. 基于相位一致性改进的活动轮廓分割模型[J]. 激光技术, 2016, 40(2): 296-302. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.031
引用本文: 郑伟, 张晶, 李凯玄, 郝冬梅. 基于相位一致性改进的活动轮廓分割模型[J]. 激光技术, 2016, 40(2): 296-302. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.031
ZHENG Wei, ZHANG Jing, LI Kaixuan, HAO Dongmei. Improved active contour segmentation model based on phase consistency[J]. LASER TECHNOLOGY, 2016, 40(2): 296-302. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.031
Citation: ZHENG Wei, ZHANG Jing, LI Kaixuan, HAO Dongmei. Improved active contour segmentation model based on phase consistency[J]. LASER TECHNOLOGY, 2016, 40(2): 296-302. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.031

基于相位一致性改进的活动轮廓分割模型

基金项目: 

河北大学医工交叉研究中心开放基金资助项目(BM201103)

详细信息
    作者简介:

    郑伟(1972-),女,教授,博士,现主要从事图像处理、图像安全通信的研究。E-mail:147685650@qq.com

  • 中图分类号: TP391

Improved active contour segmentation model based on phase consistency

  • 摘要: 为了实现甲状腺超声图像中结节组织的快速准确分割,克服图像灰度分布不均匀和边缘模糊对分割结果造成的影响,采用了基于相位一致性改进的活动轮廓分割模型。首先,利用相位一致性边缘检测原理构造一种新的速度函数,不仅弥补了梯度算子边缘检测中由于滤波处理造成边缘损坏的缺陷,而且可以灵活地控制曲线演化速率;然后,将该速度函数乘入到无边缘主动轮廓模型的能量项中,避免了线性组合中的权重分配问题,同时具有全局分割能力。通过理论分析和实验验证,改进模型的相对差异度均小于1%,运行时间均低于对比模型。结果表明,新模型实现了灰度分布不均匀图像的精确分割,同时分割效率也有所提高。
    Abstract: In order to realize rapid and accurate segmentation of nodular tissue in thyroid ultrasound images and overcome the effects of uneven gray distribution and fuzzy boundary of images on segmentation results, an improved active contour segmentation model based on phase congruency was proposed. First, a new speed function was constructed by means of the principle of phase congruency edge detection. It not only made up the defect of edge damage due to filter processing during gradient operator edge detection but also controlled curve evolution rate flexibly. After that, the speed function was introduced to the energy term of active contour model without edge to avoid the problem of weight distribution in the linear combination and have global segmentation ability. Through theoretical analysis and experimental verification,the relative difference of the improved model is less than 1% and the running time is less than that of the comparison models. The results show that the new model achieves accurate segmentation of image with uneven gray distribution and the efficiency of segmentation is improved.
  • [1]

    ZHANG Z S,XI J Q,LIU Y. Canny operator study based on GCV criteria and Otsu[J].Computer Science, 2013, 40(6):279-282(in Chinese).

    [2]

    WANG L,HE L, ARABINDA M. Active contours driven by local Gaussian distribution fitting energy[J].Signal Processing, 2009, 89(12):2435-2447.

    [3]

    CHAN T, VESE L. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2):266-277.

    [4]

    LI C M, KAO C Y, JOHN C G, et al. Implicit active contours driven by local binary fitting energy[C]//IEEE Conference on Computer Vision and Pattern Recognition. New York, USA:IEEE, 2007:1-7.

    [5]

    WANG L, LI C M, SUN Q, et al. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J]. Computerized Medical Imaging and Graphics, 2009, 33(7):520-531.

    [6]

    LIU R J, HE C J, YUAN Y. Active contours driven by local and global image fitting energy[J]. Journal of Computer-Aided Design Computer Graphics, 2012, 24(3):364-371(in Chinese).

    [7]

    ZHANG J W, FANG L, CHEN Y J, et al. Left ventricle MRI segmentation based on active contour model[J]. Acta Electronica Sinica, 2011, 39(11):2670-2673(in Chinese).

    [8]

    WANG X H, JIN Y B. The active contour model for segmentation of coastal hyperspectral remote sensing image[J].Journal of Image and Graphics, 2013, 18(8):1031-1037(in Chinese).

    [9]

    CHEN K, LI B, TIAN L F, et al. Fuzzy speed function-based active contour model for segmentation of pulmonary nodules[J].Bio-Medical Materials and Engineering,2014, 24(1):539-547.

    [10]

    MORRONE M C, OWENS R A. Feature detection from local energy[J]. Pattern Recognition Letters, 1987, 6(5):303-313.

    [11]

    MORRONE M C, BURR D C. Feature detection in human vision:a phase-dependent energy model[J]. Proceedings of the Royal Society of London, 1988, B235(1280):221-245.

    [12]

    ZHENG W, PAN Z Y, HAO D M. The improved DRLSE ultrasound image segmentation model based on phase congruency[J]. Opto-Electronic Engineering, 2014,41(1):60-64(in Chinese).

    [13]

    KOVESI P. Phase preserving denoising of images[C]//The Australian Pattern Recognition Society Conference:DICTA'99. Perth, Australia:The University of Western Australia, 1999:212-217.

    [14]

    KOVESI P. Image features from phase congruency[J]. Journal of Computer Vision Research, 1999, 1(3):1-26.

    [15]

    LI C M, XU C Y, GUI C F, et al. Level set evolution without re-initialization:a new variational formulation[C]//IEEE International Conference on Computer Vision and Pattern Recognition. New York, USA:IEEE,2005:430-436.

    [16]

    LI C M, XU C Y, GUI C F, et al. Distance regularized level set evolution and its application to image segmentation[J].IEEE Transactions on Image Processing,2010,19(12):3243-3254.

    [17]

    COLLINS D L,EVANS A C,HOLMS C, et al. Automatic 3-D segmentation of neuro-anatomical structures from MRI[C]//14th International Conference on Information Processing in Medical Imaging. New York, USA:IEEE, 1995:139-152.

计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-03-23
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回