高级检索

z轴单层行程对激光熔覆成形的影响

王鑫林, 邓德伟, 胡恒, 宋弘韬, 张洪潮

王鑫林, 邓德伟, 胡恒, 宋弘韬, 张洪潮. z轴单层行程对激光熔覆成形的影响[J]. 激光技术, 2015, 39(5): 702-705. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.025
引用本文: 王鑫林, 邓德伟, 胡恒, 宋弘韬, 张洪潮. z轴单层行程对激光熔覆成形的影响[J]. 激光技术, 2015, 39(5): 702-705. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.025
WANG Xinlin, DENG Dewei, HU Heng, SONG Hongtao, ZHANG Hongchao. Effect of single z-increment on laser cladding forming[J]. LASER TECHNOLOGY, 2015, 39(5): 702-705. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.025
Citation: WANG Xinlin, DENG Dewei, HU Heng, SONG Hongtao, ZHANG Hongchao. Effect of single z-increment on laser cladding forming[J]. LASER TECHNOLOGY, 2015, 39(5): 702-705. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.025

z轴单层行程对激光熔覆成形的影响

详细信息
    作者简介:

    王鑫林(1989-),男,硕士研究生,现主要从事激光熔覆的研究。

    通讯作者:

    邓德伟。E-mail:deng@dlut.edu.cn

  • 中图分类号: TG665

Effect of single z-increment on laser cladding forming

  • 摘要: 为了探究z轴单层行程z与单层熔覆层高度的匹配对激光熔覆成形的影响,采用了在不同的z轴单层行程z的情况下进行激光熔覆成形试验的方法,通过理论分析和实验验证,得到了不同z轴单层行程z与单层熔覆层高度以及离焦量的关系曲线。结果表明,z轴单层行程z存在一个以第2层熔覆层高度为基准的最佳的取值范围,在此范围内,熔覆过程能够通过自身存在的反馈调节达到z轴单层行程z与单层熔覆层高度相等的稳定成形状态。该研究给出z轴单层行程z选取时的推荐值为0.5d2 z 0.6d2。
    Abstract: To study effect of the matching of z-axis single increment (z) with single cladding layer height on laser cladding forming, experiments of laser cladding forming were carried out at different z. The relationship curves of different z, single cladding layer height and defocusing were obtained after theoretical analysis and experimental verification. The results show that the optimal range of z is based on the second cladding layer height. In this range, the process of cladding would reach a steady forming state by feedback regulation. A recommended value of z(0.5d2 z 0.6d2) is provided.
  • [1]

    ZHOU X W, WANG X Zh. Application of laser cladding in industrial[J]. Journal of Zhongzhou University, 2005, 22(4): 110-111(in Chinese).

    [2]

    ZHONG M, LIU W. Laser surface cladding:the state of the art and challenges[J].Journal of Mechanical Engineering Science, 2010, 224(5): 1041-1060.

    [3]

    LING Ch H, RENG J R, HE Ch L. Microstructure of in-situ synthesized chromium carbide Ni-base composite coating by laser cladding[J]. Laser Technology, 2014, 38(2): 186-190(in Chinese).

    [4]

    ZHONG M L, NING G Q, LIU W J. Research and development on laser direct manufacturing metallic components[J]. Laser Technology, 2002, 26(5):387-391(in Chinese).

    [5]

    LI Ch X, PENG Sh H, XIE P Sh, et al. The principle and application of rapid prototyping technology[J]. Journal of Gansu University of Technology, 2000, 26(3): 89-92(in Chinese).

    [6]

    ZHOU Zh T. Application of RPM in modern manufacturing[J]. Journal of Compressor Technology, 2008(4): 17-19(in Chinese).

    [7]

    HUANG W D, LIN X, CHEN J, et al. Laser solid forming technology[M].Xi'an: Northwestern Polytechnical University Press, 2007:51-52(in Chinese).

    [8]

    WANG Zh J, DONG Sh Y, XU B Sh, et al. Three-dimensional characterizing technique for geometrical features of single laser cladding[J]. Chinese Journal of Lasers, 2010, 37(2):581-585(in Chinese).

    [9]

    GRIFFITH M L, KEICHER D M, ATWOOD C L, et al. Free form fabrication of metallic components using laser engineered net shaping(LENSTM)[C]//Solid Freeform Fabrication Proceedings. Austin, Texas, USA: University of Texas, 1996:125-131.

    [10]

    GE J B, ZHANG A F, LI D Ch, et al. Process research on DZ125L superalloy parts by laser metal direct forming[J]. Chinese Journal of Lasers, 2011, 38(7):41-46(in Chinese).

    [11]

    ZHU G X, ZHANG A F, LI D Ch, et al. Effect of process parameters on surface smoothness in laser cladding[J]. Chinese Journal of Lasers, 2010, 37(1):296-301 (in Chinese).

    [12]

    WANG X Y, JING H, XU W J, et al. Laser cladding forming of are-section inclined thin-walled parts with variable z-increments[J]. Chinese Journal of Lasers, 2011, 38(10):78-84(in Chinese).

    [13]

    WANG X Y, GUO H R, XU W J, et al. Laser cladding forming of a ramp thin wall with variable powder feed rate[J]. China Mechanical Engineering, 2011, 22(6):701-705(in Chinese).

    [14]

    CHRYSSOLOURIS G, ZANNIS S, TSIRBAS K, et al. An experimental investigation of laser cladding[J]. CIRP Annals-Maunfactu-ring Technology, 2002, 51(1):145-148.

    [15]

    LEE H K. Effect of the cladding parameters on the deposition efficiency in pulsed Nd:YAG laser cladding[J]. Journal of Materials Processing Technology, 2008, 202 (1/3): 321-327.

  • 期刊类型引用(12)

    1. 王伟华,高梓航,王一,蔡小培. 高速铁路大跨桥梁端钢轨伸缩调节器监测技术. 中国铁路. 2024(09): 187-194 . 百度学术
    2. 杨雅熙,罗金,金涛. 基于线结构光-机器视觉的CHN钢轨轨距动态检测方法. 中国测试. 2023(09): 91-98 . 百度学术
    3. 程嘉昊,厉小润,王森荣,王晶,林超. 基于视觉定位的钢轨伸缩调节器伸缩量测量. 工业控制计算机. 2022(05): 64-66+69 . 百度学术
    4. 崔雅婷,王鹏,李吉民,凡勇刚,詹浩东,任高峰,张聪瑞. 地下矿山有轨运输非接触式动态轨距检测系统设计与实现. 中国矿业. 2021(08): 97-102 . 百度学术
    5. 张光跃,马增强,苑佳靖,康德,闫德立,李俊峰. 基于轮轨相对横移的轨距检测方法研究. 光电工程. 2020(02): 48-55 . 百度学术
    6. 刘子英,张靖,邓芳明. 基于位置敏感探测器的轨距在线监测系统研究. 激光技术. 2020(02): 183-189 . 本站查看
    7. 高昂,柴晓冬,李立明. 基于激光传感器的轨距测量系统研究. 智能计算机与应用. 2020(02): 240-244+249 . 百度学术
    8. 李颖,王昊,侯智雄,赵延峰,杜馨瑜,魏世斌,任盛伟. 基于控制器局域网总线的车载轨道检测系统设计研制. 中国铁道科学. 2020(04): 163-170 . 百度学术
    9. 郑新建,刘玲玲. 基于激光传感器采集信息的电气设备状态分析研究. 激光杂志. 2019(07): 179-183 . 百度学术
    10. 史红梅,许明,余祖俊. 基于最小二乘法曲线拟合的轨距参数测量方法. 铁道学报. 2019(12): 81-88 . 百度学术
    11. 熊仕勇,陈春俊,王锋,林严. 一种新的轨距动态检测方法研究. 铁道科学与工程学报. 2018(07): 1825-1831 . 百度学术
    12. 罗磊,王培俊,李文涛,唐晓敏. 一种尖轨轮廓无损检测方法研究. 激光杂志. 2018(02): 34-38 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 21
出版历程
  • 收稿日期:  2014-07-26
  • 修回日期:  2014-09-22
  • 发布日期:  2015-09-24

目录

    /

    返回文章
    返回