高级检索

基于平均中值离差的2维最小误差阈值分割法

宋斌, 杨恢先, 曾金芳, 谭正华, 李翠菊

宋斌, 杨恢先, 曾金芳, 谭正华, 李翠菊. 基于平均中值离差的2维最小误差阈值分割法[J]. 激光技术, 2015, 39(5): 717-722. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.028
引用本文: 宋斌, 杨恢先, 曾金芳, 谭正华, 李翠菊. 基于平均中值离差的2维最小误差阈值分割法[J]. 激光技术, 2015, 39(5): 717-722. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.028
SONG Bin, YANG Huixian, ZENG Jinfang, TAN Zhenghua, LI Cuiju. 2-D minimum error threshold segmentation method based on mean absolute deviation from the median[J]. LASER TECHNOLOGY, 2015, 39(5): 717-722. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.028
Citation: SONG Bin, YANG Huixian, ZENG Jinfang, TAN Zhenghua, LI Cuiju. 2-D minimum error threshold segmentation method based on mean absolute deviation from the median[J]. LASER TECHNOLOGY, 2015, 39(5): 717-722. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.028

基于平均中值离差的2维最小误差阈值分割法

基金项目: 

湖南省自然科学基金资助项目(14JJ0077);湖南省教育厅高校科研经费资助项目(13C917;13C931)

详细信息
    作者简介:

    宋斌(1989-),男,硕士研究生,现主要从事图像处理和模式识别的研究。

    通讯作者:

    杨恢先。E-mail:yanghx@xtu.edu.cn

  • 中图分类号: TN911.73

2-D minimum error threshold segmentation method based on mean absolute deviation from the median

  • 摘要: 为了解决2维最小误差阈值分割法对呈偏斜分布与重尾分布的图像分割鲁棒性较差的问题,提出一种基于平均中值离差的2维最小误差阈值分割法。考虑到1维直方图呈偏斜分布和重尾分布的图像中,中值是比均值更为鲁棒的灰度级估计量,因而将2维最小误差阈值分割法中的方差用平均中值离差替代;为提高运算速度,将2维算法分解为2个1维算法。结果表明,相比2维Otsu法、2维最小误差阈值分割法等经典算法,基于平均中值离差的2维最小误差阈值分割法对1维直方图呈偏斜分布与重尾分布的图像有更准确的分割效果、更好的鲁棒性。
    Abstract: In order to solve the problem that 2-D minimum error threshold segmentation (METS) method had poor segment robust performance on an image which presents skew distribution and heavy-tailed distribution, an improved 2-D METS method was proposed based on mean absolute deviation from the median. Considering that the median was a more robust estimator of gray level than the mean in 1-D histogram of skew distribution and heavy-tailed distribution, variance in 2-D METS was replaced by mean absolute deviation from the median. In order to improve the computational speed, a 2-D algorithm was decomposed into two 1-D algorithms. Experimental results show that, compared with 2-D Otsu method, 2-D METS method and other classical algorithms, the improved 2-D METS method based on mean absolute deviation has more accurate segmentation results and more robust performance for 1-D histogram with skew distribution and heavy-tailed distribution.
  • [1]

    DIRAMI A, HAMMOUCHE K, DIAF M, et al.Fast multilevel thresholding for image segmentation through a multiphase level set method[J]. Signal Processing,2013,93(1):139-153.

    [2]

    MOGHADDAM R F, CHERIET M. AdOtsu:An adaptive and parameterless generalization of Otsu's method for document image binarization[J]. Pattern Recognition,2012,45(6):2419-2431.

    [3]

    SATHYA P D, KAYALVIZHI R. Amended bacterial foraging algorithm for multilevel thresholding of magnetic resonace brain images[J].Measurement,2011,44(10):1828-1848.

    [4]

    KITTLER J, ILLINGWORHT J. Minimum error thresholding [J]. Pattern Recognition, 1986,19(1):41-47.

    [5]

    GONG J, LI L Y, CHEN W N. Fast recursive algorithms for two-dimensional thresholding[J].Pattern Recognition,1998,31(3):295-300.

    [6]

    SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation [J]. Journal of Electronic Imaging,2004,13(1):146-168.

    [7]

    FAN J L, LEI B. Two-dimensional extension of minimum error threshold segmentation method for gray-level images[J]. Acta Automatica Sinica,2009,35(4):386-393(in Chinese).

    [8]

    ZHU D Q, JING L Q, BI R S, et al. Improvement algorithm of minimum-error thresholding segmentation method[J]. Opto-Electronic Engineering,2010,37(7):107-113(in Chinese).

    [9]

    WU Y Q, ZHANG X J, WU Sh H, et al. Two-dimensional minimum error thresholding based on chaotic particle swarm optimization or decomposition[J]. Journal of Zhejiang University(Engineer Science Edition),2011,45(7):1198-1205(in Chinese).

    [10]

    ZHANG X M, FENG W H, HE W T, et al. Two-dimensional minimum error thresholding method nased on the artificial bee colony algorithm[J]. Journal of Guangxi University(Natural Science Edition),2013, 38(5):1126-1133(in Chinese).

    [11]

    XUE J H, TITTERINGTON D M. Median-based image thresholding[J]. Image and Vision Computing,2011,29(9):631-637.

    [12]

    LIU J, YU Z B, JIN W D. Three dimentional minimum error thres-hold algorithm and its fast recursive mathod[J].Journal of Electronics Information Technology,2013,35(9):2073-2080(in Chinese).

    [13]

    CUI T Y, LIU W P, ZHANG N. Algorithms and performance comparison of automatic thresholdingsegmentation for forest regions in remote sensing image[J]. Journal of Computer Applications,2010,30(12):3269-3273(in Chinese).

    [14]

    YUE F, ZUO W M, WANG K Q. Decomposition based two-dimensional thresholdalgorithm for grayimages[J]. Acta Automatica Sinica,2009,35(7): 1022-1027(in Chinese).

    [15]

    GONG Q, NI L, TANG P F, et al. Fast three-dimensional Otsu image segmentation algorithm based on decomposition[J]. Journal of Computer Applications,2012,32(6):1526-1528(in Chinese).

  • 期刊类型引用(7)

    1. 李丽宏,华国光. 基于改进遗传算法的最大2维熵图像分割. 激光技术. 2019(01): 119-124 . 本站查看
    2. 郭峰,刘立峰,张奎彪,刘辉,钟少辉. 家禽胴体影像分选技术研究新进展. 肉类工业. 2019(11): 31-40 . 百度学术
    3. 梁竣. 基于VR技术的激光虚拟视频图像应用研究. 激光杂志. 2018(01): 119-122 . 百度学术
    4. 蔺佳哲,王茜,杨硕. 基于机器视觉的电视末制导图像处理技术研究. 电视技术. 2017(Z1): 262-267 . 百度学术
    5. 王茜,蔺佳哲,杨硕. 基于LabVIEW Vision的雨雾环境下景象匹配末制导图像处理技术. 海军工程大学学报. 2017(05): 77-81 . 百度学术
    6. 蔺佳哲,王茜,耿广龙. 基于LabVIEW Vision的航空炮弹缺陷检测方案设计. 火力与指挥控制. 2017(07): 129-132+138 . 百度学术
    7. 谢亮. 基于信息熵和改进粒子群算法的医学图像分割方法研究. 半导体光电. 2016(06): 894-898 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  58
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 22
出版历程
  • 收稿日期:  2014-07-29
  • 修回日期:  2014-09-04
  • 发布日期:  2015-09-24

目录

    /

    返回文章
    返回