2-D minimum error threshold segmentation method based on mean absolute deviation from the median
-
摘要: 为了解决2维最小误差阈值分割法对呈偏斜分布与重尾分布的图像分割鲁棒性较差的问题,提出一种基于平均中值离差的2维最小误差阈值分割法。考虑到1维直方图呈偏斜分布和重尾分布的图像中,中值是比均值更为鲁棒的灰度级估计量,因而将2维最小误差阈值分割法中的方差用平均中值离差替代;为提高运算速度,将2维算法分解为2个1维算法。结果表明,相比2维Otsu法、2维最小误差阈值分割法等经典算法,基于平均中值离差的2维最小误差阈值分割法对1维直方图呈偏斜分布与重尾分布的图像有更准确的分割效果、更好的鲁棒性。Abstract: In order to solve the problem that 2-D minimum error threshold segmentation (METS) method had poor segment robust performance on an image which presents skew distribution and heavy-tailed distribution, an improved 2-D METS method was proposed based on mean absolute deviation from the median. Considering that the median was a more robust estimator of gray level than the mean in 1-D histogram of skew distribution and heavy-tailed distribution, variance in 2-D METS was replaced by mean absolute deviation from the median. In order to improve the computational speed, a 2-D algorithm was decomposed into two 1-D algorithms. Experimental results show that, compared with 2-D Otsu method, 2-D METS method and other classical algorithms, the improved 2-D METS method based on mean absolute deviation has more accurate segmentation results and more robust performance for 1-D histogram with skew distribution and heavy-tailed distribution.
-
-
[1] DIRAMI A, HAMMOUCHE K, DIAF M, et al.Fast multilevel thresholding for image segmentation through a multiphase level set method[J]. Signal Processing,2013,93(1):139-153.
[2] MOGHADDAM R F, CHERIET M. AdOtsu:An adaptive and parameterless generalization of Otsu's method for document image binarization[J]. Pattern Recognition,2012,45(6):2419-2431.
[3] SATHYA P D, KAYALVIZHI R. Amended bacterial foraging algorithm for multilevel thresholding of magnetic resonace brain images[J].Measurement,2011,44(10):1828-1848.
[4] KITTLER J, ILLINGWORHT J. Minimum error thresholding [J]. Pattern Recognition, 1986,19(1):41-47.
[5] GONG J, LI L Y, CHEN W N. Fast recursive algorithms for two-dimensional thresholding[J].Pattern Recognition,1998,31(3):295-300.
[6] SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation [J]. Journal of Electronic Imaging,2004,13(1):146-168.
[7] FAN J L, LEI B. Two-dimensional extension of minimum error threshold segmentation method for gray-level images[J]. Acta Automatica Sinica,2009,35(4):386-393(in Chinese).
[8] ZHU D Q, JING L Q, BI R S, et al. Improvement algorithm of minimum-error thresholding segmentation method[J]. Opto-Electronic Engineering,2010,37(7):107-113(in Chinese).
[9] WU Y Q, ZHANG X J, WU Sh H, et al. Two-dimensional minimum error thresholding based on chaotic particle swarm optimization or decomposition[J]. Journal of Zhejiang University(Engineer Science Edition),2011,45(7):1198-1205(in Chinese).
[10] ZHANG X M, FENG W H, HE W T, et al. Two-dimensional minimum error thresholding method nased on the artificial bee colony algorithm[J]. Journal of Guangxi University(Natural Science Edition),2013, 38(5):1126-1133(in Chinese).
[11] XUE J H, TITTERINGTON D M. Median-based image thresholding[J]. Image and Vision Computing,2011,29(9):631-637.
[12] LIU J, YU Z B, JIN W D. Three dimentional minimum error thres-hold algorithm and its fast recursive mathod[J].Journal of Electronics Information Technology,2013,35(9):2073-2080(in Chinese).
[13] CUI T Y, LIU W P, ZHANG N. Algorithms and performance comparison of automatic thresholdingsegmentation for forest regions in remote sensing image[J]. Journal of Computer Applications,2010,30(12):3269-3273(in Chinese).
[14] YUE F, ZUO W M, WANG K Q. Decomposition based two-dimensional thresholdalgorithm for grayimages[J]. Acta Automatica Sinica,2009,35(7): 1022-1027(in Chinese).
[15] GONG Q, NI L, TANG P F, et al. Fast three-dimensional Otsu image segmentation algorithm based on decomposition[J]. Journal of Computer Applications,2012,32(6):1526-1528(in Chinese).
-
期刊类型引用(12)
1. 王伟华,高梓航,王一,蔡小培. 高速铁路大跨桥梁端钢轨伸缩调节器监测技术. 中国铁路. 2024(09): 187-194 . 百度学术
2. 杨雅熙,罗金,金涛. 基于线结构光-机器视觉的CHN钢轨轨距动态检测方法. 中国测试. 2023(09): 91-98 . 百度学术
3. 程嘉昊,厉小润,王森荣,王晶,林超. 基于视觉定位的钢轨伸缩调节器伸缩量测量. 工业控制计算机. 2022(05): 64-66+69 . 百度学术
4. 崔雅婷,王鹏,李吉民,凡勇刚,詹浩东,任高峰,张聪瑞. 地下矿山有轨运输非接触式动态轨距检测系统设计与实现. 中国矿业. 2021(08): 97-102 . 百度学术
5. 张光跃,马增强,苑佳靖,康德,闫德立,李俊峰. 基于轮轨相对横移的轨距检测方法研究. 光电工程. 2020(02): 48-55 . 百度学术
6. 刘子英,张靖,邓芳明. 基于位置敏感探测器的轨距在线监测系统研究. 激光技术. 2020(02): 183-189 . 本站查看
7. 高昂,柴晓冬,李立明. 基于激光传感器的轨距测量系统研究. 智能计算机与应用. 2020(02): 240-244+249 . 百度学术
8. 李颖,王昊,侯智雄,赵延峰,杜馨瑜,魏世斌,任盛伟. 基于控制器局域网总线的车载轨道检测系统设计研制. 中国铁道科学. 2020(04): 163-170 . 百度学术
9. 郑新建,刘玲玲. 基于激光传感器采集信息的电气设备状态分析研究. 激光杂志. 2019(07): 179-183 . 百度学术
10. 史红梅,许明,余祖俊. 基于最小二乘法曲线拟合的轨距参数测量方法. 铁道学报. 2019(12): 81-88 . 百度学术
11. 熊仕勇,陈春俊,王锋,林严. 一种新的轨距动态检测方法研究. 铁道科学与工程学报. 2018(07): 1825-1831 . 百度学术
12. 罗磊,王培俊,李文涛,唐晓敏. 一种尖轨轮廓无损检测方法研究. 激光杂志. 2018(02): 34-38 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 6
- 被引次数: 21