高级检索

基于FPGA数字相位调制光外差激光稳频系统设计

耿伟彪, 胡姝玲, 邵洪峰

耿伟彪, 胡姝玲, 邵洪峰. 基于FPGA数字相位调制光外差激光稳频系统设计[J]. 激光技术, 2014, 38(5): 665-668. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.019
引用本文: 耿伟彪, 胡姝玲, 邵洪峰. 基于FPGA数字相位调制光外差激光稳频系统设计[J]. 激光技术, 2014, 38(5): 665-668. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.019
GENG Weibiao, HU Shuling, SHAO Hongfeng. Design of laser frequency stabilization systems based on FPGA and Pound-Drever-Hall technique[J]. LASER TECHNOLOGY, 2014, 38(5): 665-668. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.019
Citation: GENG Weibiao, HU Shuling, SHAO Hongfeng. Design of laser frequency stabilization systems based on FPGA and Pound-Drever-Hall technique[J]. LASER TECHNOLOGY, 2014, 38(5): 665-668. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.019

基于FPGA数字相位调制光外差激光稳频系统设计

基金项目: 

国家自然科学基金资助项目(61074158)

详细信息
    作者简介:

    耿伟彪(1987-),男,硕士研究生,现主要从事微波光子学、激光稳频技术的研究。

    通讯作者:

    胡姝玲

  • 中图分类号: TN248.1

Design of laser frequency stabilization systems based on FPGA and Pound-Drever-Hall technique

  • 摘要: 为了实现中心波长为1064nm的单频光纤激光器的稳频,采用相位调制光外差(PDH)激光稳频技术,搭建稳频系统光路。分析了相位调制光外差稳频信号以及误差信号特征;设计基于现场可编程门阵列(FPGA)的数字式解调和反馈控制电路,在FPGA中实现对相位调制光外差稳频信号的数字解调,再经数模转换器输出获得误差信号。结果表明,在FPGA中能成功实现对相位调制光外差信号的解调,经Allan方差计算,频率漂移的方差值可达10-11,即所设计的数字系统实现了较高的稳频精度。
    Abstract: In order to stabilize the output frequency of 1064nm single frequency fiber laser, the Pound-Drever-Hall(PDH) locking technique was applied for laser frequency stabilization. The PDH optical heterodyne frequency stabilization system was established. The phase modulation optical heterodyne signal and the demodulation error signal were analyzed. Field-programmable gate array(FPGA) based digital PDH demodulation and feedback control system was designed. A sine wave generator and the multiplication demodulation were implemented in FPGA. Then the error signals were obtained by digital/analog convector. Experimental results show that phase modulation optical heterodyne signal is demodulated successfully in FPGA, and the Allan variance of frequency drifts can reach 10-11, a high level of frequency stabilization.
  • [1]

    YE J, MA L S, HALL J L. Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy[J]. Journal of the Optical Society of America, 1998, B15(1): 6-15.

    [2]

    SUTTON A, SHADDOCK D A. Laser frequency stabilization by dual arm locking for LISA[J]. Physical Review, 2008, D78(8): 082001(1-7).

    [3]

    YUAN D D, HU S L, LIU H H, et al. Research of laser frequency stabilization[J]. Laser and Optoelectronics Progress, 2011, 48(8): 1-7 (in Chinese).

    [4]

    DREVER R W P, HALL J L, KOWALSKI F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics, 1983, B31(1): 97-105.

    [5]

    DAY T, GUSTAFSON E K, BYER R L. Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1106-1117.

    [6]

    LAM T T Y, SLAGMOLEN B J J, CHOW J H, et al. Digital laser frequency stabilization using an optical cavity[J]. IEEE Journal of Quantum Electronics, 2010, 46(8): 1178-1183.

    [7]

    BLACK E D. An introduction to Pound-Drever-Hall laser frequency stabilization[J]. American Journal of Physics, 2001, 69(1): 79-87.

    [8]

    XING J H, JIAO M X, ZHENG Y, et al. Design of digital pound-drever-hall frequency stabilizing system for two-cavity dual-frequency Nd:YAG laser[J].Proceedings of the SPIE,2012,8759:411-417.

    [9]

    PENG Y X, LI W B, SHEN N C, et al. Application of modulation and demodulation of photo-eletric signal frequency stabilization//2004 7th International Conference on Signal Processing. New York,USA:IEEE,2004,1:180-182.

    [10]

    WAKERLY J F. Digital design: principles and practices 4[M]. 4th ed. Englewood Cliffs, NJ,USA: Pearson Prentice-Hall, 2006:18-21.

计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-05
  • 修回日期:  2013-10-16
  • 发布日期:  2014-09-24

目录

    /

    返回文章
    返回