高级检索

基于新遗传算法的Otsu图像阈值分割方法

王宏文, 梁彦彦, 王志华

王宏文, 梁彦彦, 王志华. 基于新遗传算法的Otsu图像阈值分割方法[J]. 激光技术, 2014, 38(3): 364-367. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.017
引用本文: 王宏文, 梁彦彦, 王志华. 基于新遗传算法的Otsu图像阈值分割方法[J]. 激光技术, 2014, 38(3): 364-367. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.017
WANG Hongwen, LIANG Yanyan, WANG Zhihua. Otsu image threshold segmentation method based on new genetic algorithm[J]. LASER TECHNOLOGY, 2014, 38(3): 364-367. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.017
Citation: WANG Hongwen, LIANG Yanyan, WANG Zhihua. Otsu image threshold segmentation method based on new genetic algorithm[J]. LASER TECHNOLOGY, 2014, 38(3): 364-367. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.017

基于新遗传算法的Otsu图像阈值分割方法

详细信息
    作者简介:

    王宏文(1957-),男,硕士,教授,主要从事现代传动控制系统与智能化工程装备的研究。E-mail:wanghongwen@hebut.edu.cn

  • 中图分类号: TN919.73

Otsu image threshold segmentation method based on new genetic algorithm

  • 摘要: 最大类间方差(Otsu)图像分割法是常用的一种基于统计原理的图像阈值分割方法。为了改善Otsu耗时较多、分割的精度低、易产生图像误分割等不足,将猴王遗传算法与Otsu算法结合,运用猴王遗传算法的原理,寻找图像灰度的最大类间方差,即最佳阈值。结果表明,结合后的方法不仅提高了图像的分割质量、缩短了运算时间,而且非常适合图像的实时处理。
    Abstract: Maximum between-class variance (Otsu) image segmentation method is a common image threshold segmentation method based on statistical theory, but Otsu image segmentation method has some disadvantages, such as more time-consuming, low segmentation accuracy and false image segmentation. Combining the principles of monkey king genetic algorithms, with Otsu algorithm, image gray, just as optimal threshold, was found. The results show that combined method not only improves the quality of image segmentation but also reduce the computation time. It is very suitable for real-time image processing.
  • [1]

    YANG H,QU X J.Survey of image segmentation method[J].Computer Development and Applications,2005,18(3):21-23(in Chinese).

    [2]

    LIU J H, WANG J W.research on contour correction in medical CT image segmentation[J].Journal of Computers, 2012, 7 (3):762-767.

    [3]

    YANG H Y.Application research on image segmentation method[J].Computer Simulation,2012,29(2):229-232(in Chinese).

    [4]

    HAN C Y,KONG J.An improved image segmentation algorithm based on Otsu method[J].Computer Simulation,2011,28(6):262-265(in Chinese).

    [5]

    WEI Zh Ch, ZHOU J L, HANG L, et al.A study on image segmentation by a new adaptive algorithm[J].Journal of Image and Graphics,2000,5(3):216-220(in Chinese).

    [6]

    XU Y F.Image segmentation based on the genetic fuzzy C-mean algorithm[J].Journal of Northwestern Polytechnical University,2002,20(4):549-553(in Chinese).

    [7]

    LU B B,JIA Zh H,HE D, et al.A new FCM algorithm based on monkey-king genetic algorithm for remote sensing image segmengtation[J].Laser Journal,2010,31(6):15-17(in Chinese).

    [8]

    LI Y Zh,LIU H X,ZHANG Sh.Improving monkey-king genetic algorithm[J].Journal of Nanjing Normal University (Engineering and Technology Edition),2004,4(3):53-56(in Chinese).

    [9]

    JIN J,SU Y.An improved adaptive genetic algorithm[J].Computer Engineering and Applications,2005,18(2):64-69(in Chinese).

    [10]

    SHI B,TONG X N.Dual-threshold image segmentation method based on parallel genetic algorithms[J].Microcomputer Information,2009,25(1):304-306(in Chinese).

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-19
  • 修回日期:  2013-07-30
  • 发布日期:  2014-05-24

目录

    /

    返回文章
    返回