-
本文中提出适用于宽光谱的四波横向剪切干涉表面形貌测量系统的光路如图 1所示。图中,参数α为入射光和SLM法线的夹角,为了达到SLM最佳相位调制效果,α一般小于10°[19];f1、f2是双凸透锐L1、L2的焦距。将传统的2维相位光栅替换为反射式液晶空间光调制器。准直后的发光二极管(light-emitting diode,LED)出射的平行光透过被测件后,先经过物镜和管镜(tube lens,TL)组成的显微成像系统放大,再经孔径光阑(iris diaphragm,ID)和偏振片P形成完全的线偏振光入射至SLM的工作区域中,然后通过SLM调制的棋盘型相位光栅分光后,得到4束包含大部分能量的1级衍射光,最后采用双凸透镜L1和双凸透镜L2组成的中继透镜组将4束1级衍射光中继到相机的互补金属氧化物半导体(complementary metal-oxide semiconductor,CMOS)上,即图像传感器,由CMOS采集四波横向剪切干涉图像。被测件为表面刻有凹槽的石英样品,光源经准直后出射的理想平面波透过石英样品,携带石英样品的光程差(optical path difference, OPD)为:
$ \Delta l_{\mathrm{OPD}}=\left(n_1-n_0\right) \cdot h $
(1) 式中:n1为石英样品折射率;n0为空气折射率;h为石英样品表面的相对高度,根据h即可解算待测物体的表面形貌信息。因此,从四波横向剪切干涉图中解调出OPD后,根据式(1)即可获得待测物体的表面形貌信息。
通过图 1所示的测量光路,得到1幅包含待测样品表面形貌信息的干涉图后,仅考虑包含入射光绝大部分能量的0级光和1级光的情况下,载频干涉图的光强分布可表示为:
$ \begin{aligned} I(x, y)= & \frac{I_0}{8}\left\{2+2 \cos \left[2 \pi f_0 x+s k \cdot W_x(x, y)\right]+\right. \\ & \left.2 \cos \left[2 \pi f_0 y+s k \cdot W_y(x, y)\right]\right\} \end{aligned} $
(2) 图 1 基于四波横向剪切干涉的表面形貌测量系统示意图
Figure 1. Schematic diagram of a surface topography measurement system based on quadriwave lateral shearing interferometry
式中:I0为入射光光强;f0为引入的线性载频;k为波数;Wx(x, y)和Wy(x, y)为OPD在x、y方向的差分;s为剪切量。
对式(2)进行傅里叶变换(Fourier transform, FT)后,采用滤波窗函数滤出x方向的1级频谱:
$ C\left(f_x, f_y\right)=\operatorname{FT}\left\{\frac{I_0}{8} \cdot \exp \left[s k \cdot W_x(x, y)\right]\right\} $
(3) 式中:(fx, fy)为频域坐标,则OPD在x方向的差分为:
$ W_x(x, y)=\frac{\arctan \left\{\frac{\operatorname{lm}\left[\mathrm{FT}^{-1}\left\{C\left(f_x, f_y\right)\right\}\right]}{\operatorname{Re}\left[\mathrm{FT}^{-1}\left\{C\left(f_x, f_y\right)\right\}\right]}\right\}}{s k} $
(4) 式中:FT(·)和FT-1(·)为2维傅里叶变换和逆变换操作;Im(·)为求虚部运算;Re(·)为求实部运算。在提取OPD在x方向的差分后,采用相同方法提取OPD在y方向的差分,再基于最小二乘的傅里叶变换法[20]重建ΔlOPD,其表达式如下:
$ \begin{gathered} \Delta l_{\mathrm{OPD}}= \\ \mathrm{FT}^{-1}\left\{\frac{\mathrm{FT}\left[W_x(x, y)\right]+\mathrm{i} \times \mathrm{FT}\left[W_y(x, y)\right]}{2 \pi \mathrm{i} \times\left(f_x+\mathrm{i} \times f_y\right)}\right\} \end{gathered} $
(5) 式中:i为虚数单位。此时,根据式(1)即可求得样品的表面形貌信息。然而,OPD的重建精度受到0级光和1级光衍射效率的影响,当0级光的衍射效率过大时,0级光会与1级光发生干涉,在进行频域滤波时,式(3)中除了提取到所需要的x方向1级频谱之外,还会提取到少部分0级频谱及其干扰项,导致OPD在x方向的差分提取产生误差。由于采用SLM加载棋盘型相位光栅作为波前分光器件,其分光原理可以以棋盘型相位光栅为例进行理论推导,设棋盘型相位光栅周期为2T,相邻光栅单元之间的相位差为φ,则该光栅透过函数[21]可表示为:
$ \begin{gathered} t(x, y)=\left\{\operatorname { e x p } ( \mathrm { i } \varphi ) \left[\operatorname{rect}\left(\frac{x+T / 2}{T}\right) \times\right.\right. \\ \left.\operatorname{rect}\left(\frac{y-T / 2}{T}\right)+\operatorname{rect}\left(\frac{x-T / 2}{T}\right) \operatorname{rect}\left(\frac{y+T / 2}{T}\right)\right]+ \\ {\left[\operatorname{rect}\left(\frac{x+T / 2}{T}\right) \operatorname{rect}\left(\frac{y+T / 2}{T}\right)+\operatorname{rect}\left(\frac{x-T / 2}{T}\right) \times\right.} \\ \left.\left.\operatorname{rect}\left(\frac{y-T / 2}{T}\right)\right]\right\} * \sum\limits_{m_x} \sum\limits_{m_y} \mathtt{δ}\left(x-2 T m_x\right) \mathtt{δ}\left(x-2 T m_y\right) \end{gathered} $
(6) 式中:(x, y)为空间域坐标;rect(·)表示矩形函数;δ(·)表示狄拉克函数;mx、my为x、y方向的衍射级次;*表示卷积运算。对式(6)进行傅里叶变换,即可得到棋盘型相位光栅的复振幅分布:
$ \begin{gathered} \mathrm{FT}\{t(x, y)\}=\frac{1}{4} \sum\limits_{m_x} \sum\limits_{m_y} \operatorname{sinc}\left(\frac{m_x}{2}\right) \operatorname{sinc}\left(\frac{m_y}{2}\right) \times \\ \left\{\exp \left[\mathrm{i} \varphi+\mathrm{i} \frac{\pi}{2}\left(m_x-m_y\right)\right]+\exp \left[\mathrm{i} \frac{\pi}{2}\left(-m_x-m_y\right)\right]+\right. \\ \left.\exp \left[\mathrm{i} \varphi+\mathrm{i} \frac{\pi}{2}\left(-m_x+m_y\right)\right]+\exp \left[\mathrm{i} \frac{\pi}{2}\left(m_x+m_y\right)\right]\right\} \times \\ \mathtt{δ}\left(f_x-\frac{m_x}{2 T}\right) \mathtt{δ}\left(f_y-\frac{m_y}{2 T}\right) \end{gathered} $
(7) 式中:sinc(·)为归一化sinc函数,即sinc(x)=sin(πx)/πx。由式(7)易知,当mx或my为偶数时,sinc(·)=0,即偶级次的复振幅为0,棋盘型相位光栅的衍射光场中消除了偶级次。将mx=my=0代入式(7)后,求得0级衍射光的相对衍射效率:
$ \eta_0=\frac{1}{2}+\frac{1}{2} \cos \varphi $
(8) 当mx和my为±1时,求得4束1级衍射光的相对衍射效率:
$ \eta_1=\frac{32}{\pi^4}(1-\cos \varphi) $
(9) 由式(8)可知,0级光的相对衍射效率与相位差φ呈周期为2π的余弦变化,在φ=0、φ=2π时取得极大值100%,在φ=π时取得极小值0。由式(9)可知,1级衍射光的相对衍射效率与相位差φ仍然呈周期为2π的余弦变化,且变化趋势与0级光相反,在φ=0、φ=2π时取得极小值0,在φ=π时取得极大值65.72%。如图 2所示,分别是φ取0.4π、0.6π、0.8π、π时,各级频谱的归一化强度分布,红色实线框内是x方向+1级频谱,窗口半径通常取图像的1/6[22],黄色虚线框是0级光与1级光发生干涉产生的干扰频谱。从图 2中可以看出,当φ=π时,即0级光的相对衍射效率取得极小值,干扰频谱的影响最小。相位光栅相邻单元的相位差φ的表达式为:
$ \varphi=\frac{2 \pi}{\lambda}\left(n_2-n_0\right) \cdot d $
(10) 图 2 1级频谱和干扰频谱的归一化强度分布
Figure 2. Normalised intensity distributions for the first-order spectrum and interference spectrum
式中:λ为入射光的波长;n2为相位光栅的折射率;d为刻蚀深度。传统的棋盘型相位光栅的折射率和刻蚀深度固定,而当入射光波长与刻蚀深度不匹配时,1级衍射光的衍射效率降低,OPD的重建结果将会受到干扰频谱的影响。
-
为验证基于SLM的四波横向剪切干涉表面形貌测量方法的可行性与有效性,根据图 1所示系统示意图搭建了如图 5所示的基于SLM的四波横向剪切干涉实验装置。采用的光源为暖白光LED照明套件(WFA1010,THORLABS),该套件内自带预先对准的准直透镜;显微成像系统由20倍物镜(MXPLFLN-BD,OLYMPUS)和焦距为200 mm的管镜(TTL200MP,THORLABS)组成;ID为孔径光阑,用来调整入射光的光斑大小,避免入射光照射在SLM非工作面上直接反射形成0级光;偏振片P用来调整入射光的偏振态,避免因入射光线偏方向与液晶分子的不平行而产生的0级光干扰;采用的SLM为反射式纯相位空间光调制器(HDSLM80R,UPOLabs),填充率为95%,像素大小为8 μm,其调制生成的棋盘光栅周期T设置为64 μm;采用的CMOS相机像元大小为5.86 μm×5.86 μm;L1为焦距f1=50 mm的双凸透镜,L2为焦距f2=30 mm的双凸透镜,L1和L2组成的中继透镜组除了用来中继成像以外,还具有缩束的作用,将干涉图每条纹周期控制在6个像素左右,保证了CMOS像素的有效利用。
图 5 基于SLM的四波横向剪切干涉实验装置图
Figure 5. Experimental setup diagram of quadriwave lateral shearing interferometry based on SLM
为了获取待测样品的表面形貌和刻蚀深度信息,采用图 5所示的实验装置对待测样品的取样区进行测量,相机收集的干涉图如图 6所示。由于在测量的过程中显微系统及透镜引入的像差、光学系统上的灰尘、光束的不均匀性等静态波前缺陷,对测量结果具有一定的影响。为消除这些干扰,在待测样品的表面平整无刻蚀处另取一幅同样大小的背景光干涉图。
对样品干涉图进行傅里叶变换后,然后采用滤波窗函数将x方向和y方向的+1级频谱提取出来,如图 7a和图 7b所示。根据式(4)即可算出x方向和y方向的差分相位。再采用相同的方式算出背景光干涉图的x方向和y方向差分相位,最后将两幅干涉图相同方向的差分相位相减即可得到消除静态波前缺陷影响的差f分相位,如图 7c和图 7d所示。
在可见光波段石英玻璃的折射率n1=1.45990,空气的折射率n0=1.00028,结合式(1)和式(5)计算得出石英样品的表面形貌信息,如图 8a所示。为进一步获得样品的刻蚀深度信息,沿图 8a的红线剖开,得到的刻蚀深度分布如图 8b所示。该样品表面刻蚀深度的平均值为294.24 nm,底部凹槽刻蚀深度的平均值为84.85 nm,该样品的平均刻蚀深度为209.39 nm。为验证测量结果的准确性,在保持实验光路结构不变的情况下,重复开展50次实验,得到的重复性结果为209.39 nm±1.72 nm,因此,本实验中搭建的QLSI系统测量过程较稳定。
为验证本文中所提方法测量石英表面刻蚀深度的准确性,采用白光干涉仪(ER230,ATOMETRICS)对同一样品的刻蚀深度进行测量,测得的石英样品刻蚀深度为212.92 nm±1.35 nm。如表 1所示,该石英样品的标称刻蚀深度为210.83 nm±2.39 nm,因此本文中提出的方法测量石英样品刻蚀深度的相对误差为0.68%,白光干涉法测得的相对误差为0.99%,两种方法的测量结果均与样品标称值吻合,表明本文中提出的方法能成功地探测纳米级样品的表面形貌,且具有较高的精度。其次,基于逐层扫描为原理的白光干涉仪一次测量时需要提取多幅干涉图,当阈值设定为400张时,其测量时间(包括成像时间和图像呈现时间)为23.53 s,而QLSI只需要两幅干涉图即可完成表面形貌测量,其测量时间(包括成像和图像呈现时间)小于1 s,远小于白光干涉仪测量所用时间。图 8和表 1中石英样品表面刻蚀深度即为相对高度h。
表 1 本文中方法与白光干涉法测得石英样品的刻蚀深度和相对误差
Table 1. Etching depth and relative error of quartz sample measured by the method of this paper and white light interferometry
method type h/nm relative error/% measuring time/s nominal values 210.83±2.39 — — white light interferometry 212.92±1.35 0.99 23.53 proposed method 209.39±1.72 0.68 < 1 此外,将图 5所示实验装置的显微成像系统从透射式改为反射式照明,再对标称值为200 nm台阶高度的硅晶圆样品开展了测量实验研究,在LED照明下获取的3维形貌提取结果和y方向的高度剖线,如图 9a和图 9b所示。表 2所示为QLSI与白光干涉法分别开展50次重复性实验得到的台阶高度测量结果。前者对应的重复性结果为201.95 nm±1.19 nm,与标称值的相对误差为0.98%,白光干涉法对应的相对误差为0.82%。从表 2可以看出,上述两种方法得出的测量结果与样品标称值基本吻合,QLSI方法利用反射式测量时仍然具有较高的测量精度,进而在很大程度上验证了本文中所提表面形貌测量方法的有效性和可靠性。图 9和表 2中硅晶圆样品表面高度即为相对高度h。
表 2 本文中方法与白光干涉法测得硅晶圆样品的高度和相对误差
Table 2. Height and relative error of silicon wafer sample measured by the method of this paper and white light interferometry
method type h/nm relative error/% measuring time/s nominal values 200 — — white light interferometry 201.63±1.05 0.82 21.63 proposed method 201.95±1.19 0.98 < 1
基于四波横向剪切干涉的表面形貌测量方法
Measurement method for surface topography based on quadriwave lateral shearing interferometry
-
摘要: 为了解决传统四波横向剪切干涉测量系统中特定分光器件存在的加工难度高、光谱适用范围受限等问题,利用空间光调制器替代分光光栅将入射光分为4束横向剪切相干子波,通过灵活调整光栅的折射率来调制子波衍射效率以适应照明光源,再根据子波两两干涉效应重建出反映样品折射率和高度信息的光程差分布,即可实现宽光谱大尺寸范围内的表面形貌精确测量;结合傅里叶变换法研究了入射光不同波长对光程差重建精度的影响规律,并利用空间光调制器搭建了1套适用于可见光至近红外的宽光谱四波横向剪切干涉测量系统。结果表明,该系统对石英标准样件刻蚀深度的测量结果为209.39 nm±1.72 nm,与其标称值210.83 nm±2.39 nm和白光干涉仪测量值212.92 nm±1.35 nm基本保持一致,验证了所提表面形貌测量方法的有效性。该研究可为四波横向剪切干涉技术在表面形貌测量领域的扩展应用提供理论参考。Abstract: In order to solve the problems of high processing difficulty and limited spectral application range of specific spectra device in traditional quadriwave lateral shearing interferometry system, dividing incident light beam into four beams of lateral shearing coherent wavelets was proposed by using a spatial light modulator instead of a spectro grating. The diffraction efficiency of wavelets was adjusted flexibly by adjusting the refractive index of grating to adapt to the illumination light source, and the optical path difference distribution reflecting the height information and refractive index of the sample was reconstructed according to the interference effect between two wavelets, so as to realize accurate measurement of surface topography in a wide spectral and large dimensions range. In this study, the effect of incident light wavelength on the reconstruction accuracy of optical path difference was investigated by combining the Fourier transform method, and a wide spectrum quadriwave lateral shearing interferometry system from the visible to near infrared was built using a spatial light modulator. The results show that the system measured the etching depth of a standard quartz sample at 209.39 nm±1.72 nm, which is basically consistent with its nominal value of 210.83 nm±2.39 nm and the measurement value of 212.92 nm±1.35 nm by white light interferometer, which verifies the effectiveness of the surface topography measurement method proposed. This study can provide a theoretical reference for the extended application of quadriwave lateral shearing interferometry in the field of surface topography measurement.
-
表 1 本文中方法与白光干涉法测得石英样品的刻蚀深度和相对误差
Table 1. Etching depth and relative error of quartz sample measured by the method of this paper and white light interferometry
method type h/nm relative error/% measuring time/s nominal values 210.83±2.39 — — white light interferometry 212.92±1.35 0.99 23.53 proposed method 209.39±1.72 0.68 < 1 表 2 本文中方法与白光干涉法测得硅晶圆样品的高度和相对误差
Table 2. Height and relative error of silicon wafer sample measured by the method of this paper and white light interferometry
method type h/nm relative error/% measuring time/s nominal values 200 — — white light interferometry 201.63±1.05 0.82 21.63 proposed method 201.95±1.19 0.98 < 1 -
[1] 刘佳敏, 赵杭, 吴启哲, 等. 先进节点图案化晶圆缺陷检测技术[J]. 激光与光电子学进展, 2023, 60(3): 0312003. LIU J M, ZHAO H, WU Q Zh, et al. Patterned wafer defect inspection at advanced technology nodes[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312003(in Chinese). [2] 金川. 基于数字全息的微纳结构测量及其关键技术研究[D]. 北京: 中国科学院大学, 2022. JIN Ch. Research on micro-nano structure measurement based on digital holography and its key technologies[D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2022(in Chinese). [3] 韩志国, 李锁印, 冯亚南, 等. 接触式轮廓仪探针状态检查图形样块的研制[J]. 微纳电子技术, 2019, 56(9): 761-765. HAN Zh G, LI S Y, FENG Y N, et al. Development of the inspection pattern specimen for the contact profiler stylus state[J]. Micronanoelectronic Technology, 2019, 56(9): 761-765(in Chinese). [4] HUI F, LANZA M. Scanning probe microscopy for advanced nanoelectronics[J]. Nature Electronics, 2019, 2(6): 221-229. doi: 10.1038/s41928-019-0264-8 [5] CHEN J L, YU Q H, GE B, et al. A phase difference measurement method for integrated optical interferometric imagers[J]. Remote Sensing, 2023, 15(8): 2194. doi: 10.3390/rs15082194 [6] YUAN X, XUE Y G, MIN J W, et al. High-precision gaseous flame temperature field measurement based on quadriwave-lateral shearing interferometry[J]. Optics and Lasers in Engineering, 2023, 162: 10730. [7] KHADIR S, ANDRÉN D, VERRE R, et al. Metasurface optical characterization using quadriwave lateral shearing interferometry[J]. ACS Photonics, 2021, 8(2): 603-613. doi: 10.1021/acsphotonics.0c01707 [8] 刘克, 张孝天, 钟慧, 等. 四波前横向剪切干涉仪的关键技术研究[J]. 光学学报, 2023, 45(15): 1512001. LIU K, ZHANG X T, ZHONG H, et al. Key technologies of quadri-Wave lateral shearing interferometer[J]. Acta Optica Sinica, 2023, 43(15): 1512001(in Chinese). [9] 位文广, 韩俊鹤, 付玉洲. 一种两步相移数字全息的设计与实验验证[J]. 激光技术, 2020, 44(1): 86-90. WEI W G, HAN J H, FU Y Zh. Design and verification of two-step phase-shifted digital holography[J]. Laser Technology, 2020, 44(1): 86-90(in Chinese). [10] ZHONG Zh, WANG Ch, LIU L, et al. Diffraction phase microscopy using a defocus grating[J]. Journal of Modern Optics, 2022, 69(4): 219-224. doi: 10.1080/09500340.2021.2024289 [11] 朱文华. 多波段激光波前瞬态干涉关键技术研究[D]. 南京: 南京理工大学, 2019. ZHU W H. Research on transient interferometric techniques of laser wavefront at multiple wavelengths[D]. Nanjing: Nanjing University of Science and Technology, 2019(in Chinese). [12] 崔博川. 基于衍射光学元件的多波前横向剪切干涉方法研究[D]. 北京: 中国科学院大学, 2018. CUI B Ch. Research on multiwave lateral shearing interferometry based on diffractive optical elements[D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2018(in Chinese). [13] DAI F, TANG F, WANG X, et al. Generalized zonal wavefront reconstruction for high spatial resolution in lateral shearing interferometry[J]. Journal of the Optical Society of America, 2012, A29(9): 2038-2047. [14] LI J, TANG F, WANG X Zh, et al. Wavefront reconstruction for lateral shearing interferometry based on difference polynomial fitting[J]. Journal of Optics, 2015, 17(6): 065401. doi: 10.1088/2040-8978/17/6/065401 [15] PRIMOT J, GUéRINEAU N. Extended hartmann test based on the pseudoguiding property of a hartmann mask completed by a phase chessboard[J]. Applied Optics, 2000, 39(31): 5715-5720. doi: 10.1364/AO.39.005715 [16] LING T, LIU D, YUE X M, et al. Quadriwave lateral shearing interferometer based on a randomly encoded hybrid grating[J]. Optics Letters, 2015, 40(10): 2245-2248. doi: 10.1364/OL.40.002245 [17] 方波. 基于位相光栅的四波横向剪切干涉法波前检测技术研究[D]. 南京: 南京理工大学, 2014. FANG B. Wavefront measurement with four-wave lateral shearing interferometry based on phase grating[D]. Nanjing: Nanjing University of Science and Technology, 2014(in Chinese). [18] 宋金伟, 闵俊伟, 袁勋, 等. 基于二维朗奇相位光栅的四波横向剪切干涉定量相位成像[J]. 光子学报, 2022, 51(11): 1118001. SONG J W, MIN J W, YUAN X, et al. Quadriwave lateral shearing interferometry quantitative phase imaging based on 2D ronchi phase grating[J]. Acta Photonica Sinica, 2022, 51(11): 1118001(in Chinese). [19] ZHAO Z X, ZHUANG Y Y, XIAO Zh X, et al. Characterizing a liquid crystal spatial light modulator at oblique incidence angles using the self-interference method[J]. Chinese Optics Letters, 2018, 16(9): 090701. [20] KOTTLER C, DAVID C, PFEIFFER F, et al. A two-directional approach for grating based differential phase contrast imaging using hard X-rays[J]. Optics Express, 2007, 15(3): 1175-1181. [21] 翟中生, 黄缘胜, 李沁洋, 等. 基于空间光调制器的正交相位光栅衍射特性[J]. 光学学报, 2022, 42(16): 1605002. ZHAI Zh Sh, HUANG Y Sh, LI Q Y, et al. Diffraction characteristics of orthogonal phase grating based on spatial light modulator[J]. Acta Optica Sinica, 2022, 42(16): 1605002(in Chinese). [22] BAFFOU G. Quantitative phase microscopy using quadriwave lateral shearing interferometry (QLSI): Principle, terminology, algorithm and grating shadow description[J]. Journal of Physics, 2021, D54(29): 294002.