-
脉冲氙灯作为脉冲电源系统的负载,具有非线性的伏安特性。当氙灯点燃时,灯内气体快速电离,氙灯阻抗也迅速降低,当电离程度最大时,氙灯阻抗达到最小值,此后氙灯开始熄灭。但由于等离子体的时域记忆效应,氙灯阻抗并不是立刻上升,而是在最小值处维持一段时间,此后再缓慢上升[16-17]。
氙灯阻抗表现为时间与电流密度的函数,灯内电弧稳定后,氙灯两端电极电压和通过氙灯的电流满足Goncz公式[18-19]:
$ U=K_0 I^{\frac{1}{2}} $
(1) 式中:U为氙灯两端电极电压;I为氙灯电流;K0为氙灯的灯常数,表征氙灯阻抗特性,其与氙灯充气气压、氙灯长度和内径有关。K0的值可以通过下面等式求得[20]:
$ K_0=0.477\left(\frac{p}{450}\right)^{0.2} \frac{l}{d} $
(2) 式中:p为氙灯充气气压,单位为Pa;l为氙灯长度,单位为m;d为氙灯内径,单位为m。
由式(1)和式(2)可以求得氙灯电阻为:
$ R_D(I)=0.477\left(\frac{p}{450}\right)^{0.2} \frac{l}{d} I^{-\frac{1}{2}} $
(3) 式中:下标D表示氙灯负载。给定氙灯充气气压和外形尺寸等参数后,即可得出氙灯的非线性伏安特性曲线。
-
本文中所采用的氙灯极间距为0.33 m,灯内径为0.02 m,充气气压为一个标准大气压(101.3 kPa),则可根据3.1节中所列公式求得氙灯的灯常数为:
$ \begin{gathered} K_0=0.477\left(\frac{p}{450}\right)^{0.2} \frac{l}{d}= \\ 0.477 \times\left(\frac{101300}{450}\right)^{0.2} \times \frac{0.33}{0.02}=23.25 \end{gathered} $
(4) 系统的主要技术指标为:最大抽运能量17 kJ;最大抽运脉冲电压4.2 kV;电流脉宽0.8 ms~1.5 ms。假设每支氙灯的抽运能量和抽运电压均相同,则每支氙灯需要的抽运能量E =4.25 kJ。根据指标要求可以求得单个储能电容值为:
$ C=\frac{2 E}{U^2}=482 \;\mathtt{μ} \mathrm{F} $
(5) 选取4只电容值为500 μF的干式结构金属化薄膜电容作为抽运能量的存储介质,其耐压值为5.5 kV,额定电流为5 kA。所选电容器最大充电电压为4.2 kV,最大抽运能量为17.64 kJ,满足系统指标要求。
氙灯放电时应使电路处于临界阻尼状态下,这样可以确保储能电容最大程度地释放电能,此时放电电流的脉宽约为$t_{\mathrm{p}}=3 \sqrt{L C} $[21],根据指标要求取电流脉宽为1.0 ms,则可以求得单个成型电感值为:
$ L=\frac{t_{\mathrm{p}}{ }^2}{9 C}=223 \;\mathtt{μ}\mathrm{H} $
(6) 对于成型电感的选型,要求其对外界的电磁干扰小、能量密度高、损耗低、体积小且电感值准确。成型电感采用多层螺旋管结构设计,定制电感值为300 μH,额定电流为5 kA,耐压值为10 kV,内阻不大于200 mΩ。
-
为便于分析,将氙灯LC放电主回路等效成2阶RLC零输入电路,如图 6所示。图中,R表示回路总电阻(不包括氙灯),L表示成型电感,C表示储能电容,D表示氙灯负载。由于氙灯本身具有一定电感,因此实际电路往往比设计电路的输出电流脉宽大。在相关软件中建立仿真模型,电路参数为:C =500 μF;L =300 μH;R =200 mΩ(氙灯电阻除外)。图 7为储能电容电压设定为4.2 kV时的氙灯电流仿真波形。从图中可以看出,氙灯放电时的电流峰值可达3.55 kA,峰值时间为408 μs,电流脉宽为1.05 ms。
吊舱式一体化灯抽运固体激光器高效脉冲电源的设计
Design of high-efficiency pulse power supply for integrated podded lamp-pumping solid-state laser
-
摘要: 为了实现机载脉冲激光介质高效抽运电源的小型轻量化,采用一体化结构设计方法,设计了一套为吊舱式灯抽运固体激光器脉冲氙灯提供抽运能量的高效脉冲电源系统。对氙灯放电特性及器件参数进行了理论分析和实验验证,获得了氙灯放电主回路关键器件参数,试制了原理样机并进行了联调实验。结果表明,电源系统总质量约为48 kg,电容充电时间为3.76 s,氙灯放电峰值电流为3.6 kA,电流脉宽为1.06 ms;实际测试数据与理论数据基本一致,脉冲电源系统放电回路参数设计合理。该关键技术具有可行性,采用一体化结构设计方法后,脉冲电源系统体积重量能满足特殊设备的使用需求。Abstract: Aiming at the characteristics of low relative load capacity and small volume capacity of helicopter platform, and to achieve the purpose of efficient pumping of airborne pulse laser media, an integrated structural design method was adopted to design an efficient pulse power supply system that provides pumping energy for pulse xenon lamps of podded lamp-pumping solid-state laser. Theoretical analysis and experimental verification were conducted on the discharge characteristics and device parameters of xenon lamps, and the key device parameters of discharge main circuit of xenon lamp were obtained. A principle prototype was trial-produced, and joint debugging experiments were conducted. The results show that the actual test data are basically consistent with the theoretical data, and the discharge loop parameters of the pulse power supply system are designed reasonably. The total mass of the power supply system is about 48 kg, the capacitor charging time is 3.76 s, the peak discharge-current of xenon lamp is 3.6 kA, and the pulse width is 1.06 ms, respectively. After adopting the integrated structural design method, the volume and weight of the pulse power supply system can meet the requirements of the airborne platform, verifying the feasibility of the key technology.
-