Study on wear resistance of laser cladding Ti3V2Nb based on lightweight high entropy alloy coatings
-
摘要: 为了制备具有合适微观结构和优异性能的轻质高熵合金(LHEA),采用激光熔覆技术在TC4基体上制备了不同Al、Ni物质的量比的Ti3V2NbAlxNiy LHEA,对其微观结构及其摩擦磨损性能进行研究,并分析了添加微量MoB陶瓷颗粒对其组织性能的影响。结果表明,Ti3V2NbAl0.5Ni0.5、Ti3V2NbAl0.5、Ti3V2NbNi0.5涂层的物相由单一体心立方晶体(BCC)组成,而Ti3V2NbAl0.5Ni0.5/MoB涂层则形成了第2相A15相;相对基体的硬度,4种涂层的硬度均有提升;4种涂层的磨损形式主要为黏着磨损,磨痕内分布有黏着层与少量氧化层,此外也在磨痕内观察到轻微的磨粒磨损产生的犁沟特征,相对于基体的磨损率均有较大降低,其中Ti3V2NbAl0.5Ni0.5/MoB涂层的磨损率降低了51.1%。所制备的LHEA耐磨性好,可作为航空航天、国防设备制造等领域中TC4零件的保护性涂层。Abstract: In order to prepare lightweight high entropy alloy (LHEA) with suitable microstructure and excellent properties, Ti3V2NbAlxNiy LHEA with different Al and Ni ratios were prepared on TC4 substrate using laser cladding technology. Its microstructure, friction, and wear properties were studied, and the effect of adding a small amount of MoB ceramic particles on its microstructure and properties was discussed. The results show that the phases of Ti3V2NbAl0.5Ni0.5, Ti3V2NbAl0.5 and Ti3V2NbNi0.5 coatings are composed of a single body-centered cubic crystal(BCC), while the second phase A15 is formed in Ti3V2NbAl0.5Ni0.5/MoB coatings. Compared with the hardness of the matrix, the hardness of four coatings has been improved. The wear forms of four coatings are mainly adhesive wear, with adhesive layer and a small amount of oxide layer distributed in the wear marks, and furrow characteristics caused by slight abrasive wear are also observed in the wear marks. Compared with the matrix, the wear rate of Ti3V2NbAl0.5Ni0.5/MoB coating is greatly reduced, and the wear rate of Ti3V2NbAl0.5Ni0.5/MoB coating is reduced by 51.1%. The LHEA in this paper has good wear resistance and can be used as a protective coating for TC4 parts in aerospace, national defense equipment manufacturing and other fields.
-
-
表 1 TVN X LHEA体系中各热力学参数
Table 1 Thermodynamic parameters in the TVN X LHEA system
coating composition ΔSmix/(J· K-1·mol-1) ΔHmix/(kJ·mol-1) Tm/K Ω δr/% Δχ/% AVEC TVN 1 11.44 -13.80 2031 1.68 5.31 5.78 4.78 TVN 2 9.80 -7.38 2054 2.72 4.50 2.55 4.38 TVN 3 10.02 -8.85 2115 2.73 5.48 6.01 4.57 TVN 4 11.46 -13.85 2032 1.68 5.40 5.83 4.79 -
[1] 赵懿臻, 张航, 蔡江龙, 等. 激光增材制造BCC基难熔高熵合金组织与性能研究. 中国激光, 2022, 49(14), 1402105. ZHAO Y Zh, ZHANG H, CAI J L, et al. Study on the structure and properties of BCC based refractory high entropy alloy manufactured with photoadditive[J]. Chinese Journal of Lasers, 2022, 49(14): 1402105(in Chinese).
[2] PRIYANKA K, AMIT K G, RAJESH K M, et al. A comprehensive review: Recent progress on magnetic high entropy alloys and oxides[J]. Journal of Magnetism and Magnetic Materials, 2022, 554: 169142. DOI: 10.1016/j.jmmm.2022.169142
[3] TSAI M H, YEH J W. High-entropy alloys: A critical review[J]. Materials Research Letters, 2014, 2(3): 107-123. DOI: 10.1080/21663831.2014.912690
[4] CAI Zh B, CUI X F, LIU Zh. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing[J]. Optics and Laser Technology, 2018, 99: 276-281. DOI: 10.1016/j.optlastec.2017.09.012
[5] SHU F Y, LIU S, ZHAO H Y. Structure and high-temperature pro-perty of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J]. Journal of Alloys and Compounds, 2018, 731: 662-666. DOI: 10.1016/j.jallcom.2017.08.248
[6] LI Sh, TOMIKO Y. High-temperature oxidation performance of laser-cladded amorphous TiNiSiCrCoAl high-entropy alloy coating on Ti-6Al-4V surface[J]. Surface & Coatings Technology, 2022, 433: 128123.
[7] DENG Ch, WANG Ch, CHAI L J. Mechanical and chemical properties of CoCrFeNiMo0.2 high entropy alloy coating fabricated on Ti6Al4V by laser cladding[J]. Intermetallics, 2022, 144: 107504. DOI: 10.1016/j.intermet.2022.107504
[8] ARIF Z U, KHALID M Y, RASHID A A, et al. Laser deposition of high-entropy alloys: A comprehensive review[J]. Optics & Laser Technology, 2022, 145: 107447.
[9] ZHANG M N, WANG D F, HE L J. Microstructure and elevated temperature wear behavior of laser-cladded AlCrFeMnNi high-entropy alloy coating[J]. Optics and Laser Technology, 2022, 149: 107845. DOI: 10.1016/j.optlastec.2022.107845
[10] LIN Ch M, JUAN Ch Ch, CHANG Ch H. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys[J]. Journal of Alloys and Compounds, 2015, 624: 100-107. DOI: 10.1016/j.jallcom.2014.11.064
[11] HUANG T D, WU Sh Y, JIANG H. Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys[J]. International Journal of Minerals, 2020, 27(10): 1318-1325.
[12] LI Zh T, JING C N, FENG Y. Microstructure evolution and properties of laser cladding Nb containing eutectic high entropy alloys[J]. International Journal of Refractory Metals and Hard Materials, 2023, 110: 105992. DOI: 10.1016/j.ijrmhm.2022.105992
[13] ZHANG H, HE Y Z, PAN Y. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding[J]. Materials & Design, 2011, 32(4): 1910-1915.
[14] ZHANG H, HE Y, PAN Y. Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening[J]. Scripta Materialia, 2013, 69 (4): 342-345. DOI: 10.1016/j.scriptamat.2013.05.020
[15] QIU X W, ZHANG Y P, HE L, et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy[J]. Journal of Alloys and Compounds, 2013, 549 (5): 195-199.
[16] YE X, MA M, LIU W, et al. Synthesis and characterization of high-entropy alloy AlxFeCoNiCuCr by laser cladding[J]. Advances in Materials Science and Engineering, 2011, 7: 485942.
[17] HUANG C, ZHANG Y, VILAR R, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J]. Materials & Design, 2012, 41: 338-343.
[18] DENG Ch, WANG Ch, CHAI L J. Mechanical and chemical pro-perties of CoCrFeNiMo0.2 high entropy alloy coating fabricated on Ti6Al4V by laser cladding[J]. Intermetallics, 2022, 144: 107504. DOI: 10.1016/j.intermet.2022.107504
[19] ZHANG H X, DAI J J, SUN C X. Microstructure and wear resistance of TiAlNiSiV high-entropy laser cladding coating on Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2020, 282: 116671. DOI: 10.1016/j.jmatprotec.2020.116671
[20] YAO H W, LIU Y M, SUN X H, et al. Microstructure and mecha-nical properties of Ti3V2NbAlxNiy low-density refractory multielement alloys[J]. Intermetallics, 2021, 133: 107187. DOI: 10.1016/j.intermet.2021.107187
[21] GUO S, NG C, LU J, et al. Effect of valence electron concentration on stability of FCC or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011, 109(10): 103505. DOI: 10.1063/1.3587228
[22] LI Zh T, JING C N, FENG Y, et al. Microstructure evolution and properties of laser cladding Nb containing eutectic high entropy alloys[J]. International Journal of Refractory Metals and Hard Materials, 2023, 110: 105992. DOI: 10.1016/j.ijrmhm.2022.105992
[23] 张鸿羽, 余敏, 华俊伟, 等. Mo元素对Fe-Cr-Mo激光熔覆层组织及性能的影响[J]. 中国激光, 2021, 48(22): 2202010. ZHANG H Y, YU M, HUA J W, et al. The effect of Mo element on the structure and properties of Fe-Cr-Mo laser cladding layer[J]. Chinese Journal of Lasers, 2021, 48(22): 2202010(in Chinese).