-
所用的计算方法通过密度泛函理论来进行,并在维也纳从头计算模拟包(Vienna ab-initio simulation package, VASP)中实现[32]。采用广义梯度近似(generalized-gradient approximation, GGA)描述交换相关势[33]。在所有的计算中,平面波函数截止能被设置为400 eV;巴德电荷分析用于计算离子与电极材料表面之间的电荷转移量[34];为了保证计算的准确性和效率,收敛检验后采用3×3×1网格对布里渊区进行采样;离子的扩散路径和扩散势垒通过爬坡微动弹性带(climbing image nudged elastic band, CI-NEB)方法确定;同时,真空层沿z方向的厚度设为3 nm;初始状态和最终状态的总能量的收敛标准设置为10-4 eV,晶格结构以最大力0.1 eV/nm的阈值完全弛豫。锂/钠离子在B2S3表面吸附能的计算如下:
$ E_{\mathrm{ad}}=E_{\mathrm{Li} / \mathrm{NaB}_2 \mathrm{S}_3}-E_{\mathrm{B}_2 \mathrm{S}_3}-E_{\mathrm{Li} / \mathrm{Na}} $
(1) 式中:EB2S3是B2S3单层的总能量;ELi/NaB2S3是吸附锂/钠离子的总能量;ELi/Na是单个锂/钠原子的总能量。
吸附锂/钠离子B2S3体系在最稳定吸附结构的电荷密度差的计算如下:
$ \Delta \rho=\rho_{\mathrm{Li} / \mathrm{NaB}_2 \mathrm{S}_3}-\rho_{\mathrm{B}_2 \mathrm{S}_3}-\rho_{\mathrm{Li} / \mathrm{Na}} $
(2) 式中:ρLi/NaB2S3是B2S3电荷密度;ρB2S3是B2S3原始单层的电荷密度;ρLi/Na是分离锂/钠离子的电荷密度。
B2S3单层的理论质量比容量的计算如下:
$ C=\frac{n F}{M_{\mathrm{B}_2 \mathrm{S}_3}} $
(3) 式中:C是理论质量比容量;n是吸附的锂/钠原子数;F是法拉第常数(F =26.8 Ah/mol);MB2S3是B2S3的相对分子质量。
B2S3开路电压的的计算如下:
$ V_{\mathrm{OCV}}=\frac{E_{x_1, \mathrm{B}_2 \mathrm{S}_3}+\left(x_2-x_1\right) E_{\mathrm{Li} / \mathrm{Na}}-E_{x_2, \mathrm{B}_2 \mathrm{S}_3}}{\left(x_2-x_1\right) e} $
(4) 式中:VOCV是开路电压;ELi/Na是体心立方结构中单个锂/钠离子的总能量;Ex1, B2S3和Ex2, B2S3是锂/钠离子先后吸附在B2S3表面的总能量;x1和x2是B2S3先后吸附锂/钠离子的数量(x1 < x2)。
-
图 1a为优化后的2 × 2 × 1超胞晶格单层B2S3结构的俯视图和侧视图。优化后的晶格常数(a=b)为1.092 nm,其中单体胞含有2个硼原子和3个硫原子,其中粉红球和黄球分别代表硼原子和硫原子,从图中可以看出,优化后的单层B2S3几何结构为平面结构,空间群为P62m。图 1b展示了B2S3结构的键角。硼-硫键长为0.183 nm,硫-硼-硫的键角为120°,所有的硼原子都表现出三角平面配位。
图 1 a—B2S3结构的模型示意图 b—B2S3结构的键角
Figure 1. a—model diagram of B2S3 structure b—bond angle of B2S3 structure
每个氧化态为+3价的硼原子通过σ键与周围的3个硫原子连接,形成1个平面三角形。三角形单元按照特定的规则排列,形成Kagome晶格。
众所周知,材料的结构稳定性是评估其作为电池阳极可行性的先决条件[35]。因此,分别计算了B2S3单层的声子谱、分子动力学和弹性常数,以研究动力学、热稳定性和力学稳定性。首先对B2S3进行形成能的计算分析研究。一般认为,形成能可以表明2维材料的结构热力学稳定性,计算形成能的公式如下:
$ E=\frac{E_{\mathrm{B}_2 \mathrm{S}_3}-2 E_{\mathrm{B}}-3 E_{\mathrm{S}}}{5} $
(5) 式中:EB和ES分别对应于硼原子和硫原子的总能量。根据式(5),B2S3的形成能为-1.445 eV,该材料的形成能小于零,比其它已知稳定材料例如PC3单层[36](-0.38 eV)、SiP3单层[37](-0.18 eV)和双T石墨烯双层[38](-0.86 eV)2维体系的形成能都高,从而证明了B2S3单层结构具有良好的热力学稳定性。对B2S3在300 K进行了分子动力学模拟,时间步长1 fs,模拟时间为5 ps,验证了B2S3在300 K的良好热稳定性。
图 2展示了分子动力学模拟中自由能随时间的变化。时间为0 ps~5 ps,温度为300 K。从内置结构图中可以看出,B2S3在5 ps时间范围内的结构保持良好,其总能量波动范围很窄,进一步说明2维B2S3结构在室温条件具有较好的热稳定性。此外,B2S3单层声子的能带结构如图 3所示。图中,Γ, M, X为能带。可以清楚地看出,在整个布里渊区不存在虚频率,这说明B2S3单层具有动力学稳定的结构[39]。
在电离过程中,材料的力学性能会发生较大的变化,从而导致结构变化或容量衰减,因此需要确定材料的抗变形能力。考虑分析弹性常数,计算了B2S3单层的力学稳定性。一般弹性常数反映材料结构的力学稳定性,杨氏模量和泊松比则反映材料对弹性变形的抗力。采用应变-应力法计算得到的弹性常数分别为C11=64.58 N/m,C12=11.57 N/m,C66=27.34 N/m。2维六边形体系B2S3结构的弹性常数满足玻恩准则[40]:C11>丨C12丨和C66>0,证实了B2S3单层的力学稳定性。与材料的力学性能直接相关的是杨氏模量和泊松比,可以判断材料在充放电过程中是否出现体积膨胀。杨氏模量和泊松比分别由式(6)和式(7)求得:
$ E(\theta)=\frac{C_{11} C_{12}-C_{12}{ }^2}{C_{11} s^4+C_{22} c^4+\left(\frac{C_{11} C_{12}-C_{12}{ }^2}{C_{66}}-2 C_{12}\right) c^2 s^2} $
(6) $ \begin{gathered} \nu(\theta)= \\ \frac{\left(C_{11}+C_{12}-\frac{C_{11} C_{12}-C_{12}{ }^2}{C_{66}}\right) c^2 s^2-C_{12}\left(c^4+s^4\right)}{C_{11} s^4+C_{22} c^4+\left(\frac{C_{11} C_{12}-C_{12}{ }^2}{C_{66}}-2 C_{12}\right) c^2 s^2} \end{gathered} $
(7) 式中:c=cos θ, s=sin θ。
计算得到2维极坐标表示曲线中任意方向θ的平面内杨氏模量和泊松比,如图 4所示。沿任意方向的杨氏模量的最大值约为63.56 GPa,最小值约为62.55 GPa;沿任意方向的泊松比最大值约为0.187 GPa,最小值约为0.176 GPa。可以看出,沿各个不同方向计算的杨氏模量和泊松比的值相差不大,此时可以称该材料是各向同性材料。与之相反,若沿各个不同方向计算的杨氏模量和泊松比的值各不相同且有较大差异,称该材料是各向异性材料。由图 4可知,B2S3单层的杨氏模量和泊松比量具有高度的各向同性,表现出各向同性的力学性能。
-
2维材料对金属离子的有效吸附能力是作为金属离子电池负极材料的关键因素之一。将单个锂/钠离子置于B2S3表面的不同吸附位点,研究了单个离子在B2S3单层表面的吸附,以确定吸附的最稳定位置。由于B2S3结构的对称性,存在5个吸附位点,分别在B2S3的硼原子(TB),硫原子(TS),硼硫键(T),六边形的中间(H2)及Kagome晶格正中间(H1),如图 5a俯视图和图 5b侧视图所示。在计算其吸附能时,由于锂离子的TB位点和T位点都转移到了H1位点,TS位点转移到H2位点,因此锂离子需考虑两个有效吸附位点(H1和H2)。钠离子的TS位点转移到H1位点,T位点转移到H2位点,因此钠离子需考虑3个有效吸附位点(H1,H2和TB)。图中h是吸附高度。
图 5 a—B2S3表面的吸附位点 b—吸附位点侧视图
Figure 5. a—adsorption sites on the surface of B2S3 b—side view of adsorption sites
计算得知各有效吸附位点的吸附能如表 1所示。负吸附能越大,说明锂/钠离子在B2S3表面的吸附更利于放热,吸附体系(M-B2S3)更稳定。单个锂离子在有效吸附位点H1、H2的吸附能分别为-0.71 eV、-0.48 eV,单个钠离子在有效吸附位点H1、H2和TB的吸附能分别为-0.58 eV、-0.27 eV和-0.11 eV,说明H1吸附位点是锂和钠离子最有利的吸附位点。此外,与钠离子相比,Li-B2S3体系的吸附能更低,表明锂离子更容易吸附在B2S3体系,这是由于相对于钠离子,锂离子具有更高的活性和更小的半径。
表 1 锂/钠离子对B2S3表面的吸附位置、吸附能、电荷转移量和吸附高度
Table 1. Adsorption position, adsorption energy, charge transfer amount, and adsorption height of Li/Na ions on the B2S3 surface
metal adsorption position adsorption evergy/eV charge transfer amount|e| adsorption height/nm Li H1 -0.7 0.82 0.135 H2 -0.58 0.86 0.144 Na H1 -0.48 0.84 0.125 H2 -0.27 0.83 0.129 TB -0.11 0.88 0.142 B2S3单层显示半导体特性,电导率是评估B2S3作为电池阳极材料倍率性能的关键指标之一。图 6中分析了吸附锂/钠离子的B2S3单层的能带和投影态密度。其中锂/钠离子吸附在最稳定的位点。与未吸附锂/钠离子的结构相比,吸附锂/钠离子的B2S3单层在费米能级附近的态密度增强的主要原因是硼原子p轨道和硫原子p轨道的贡献。
图 6 单个锂/钠离子吸附在B2S3单层的投影态密度
Figure 6. Projection statedensity for single Li/Na ion adsorption on B2S3 monolayer
图 7展示了B2S3单层从半导体特性转变为金属特性,进一步证实了锂/钠离子将电子转移到B2S3单层表面可以提高电子导电性。图中黄色为电荷积累,蓝色为电荷减少。
图 7 锂/钠离子在B2S3表面吸附的差分电荷密度
Figure 7. Differential charge density of Li/Na ions adsorbed on B2S3 surface
为了更好地理解锂/钠离子在B2S3单层上的吸附机理,采用式(2)计算了锂/钠离子向B2S3的电荷转移量,如表 1所示。可以看出,锂/钠离子在从最佳吸附位点向B2S3分别转移了0.82|e|/0.84|e|个电荷转移量,如图 8所示。通过分析电荷转移证实锂/钠离子与B2S3之间存在很强的离子相互作用,表明B2S3对锂/钠离子是稳定的化学吸附。
倍率性能是作为电池电极材料的重要性质之一,锂/钠离子在阳极表面的扩散动力学特性是判断锂/钠离子电池速率性能的关键指标,为此有必要研究其扩散行为。如图 9所示,采用CI-NEB方法对3 × 3 × 1锂/钠-B2S3表面的锂/钠离子扩散势垒进行了评价,模拟了两个相邻低能吸附位点之间的路径,分析了锂离子的扩散路径(H1→H2→H1)和钠离子的扩散路径(H1→TB→H1)。
如图 10所示,锂离子的扩散势垒为0.23 eV,钠离子的扩散势垒为0.14 eV,与其它2维阳极材料对比发现,锂离子在B2S3表面的扩散势垒小于在硅/磷烯(0.57 eV/0.76 eV)[41]、YS2 (0.33 eV)[42]和石墨烯(0.37 eV)[43]表面的扩散势垒;钠离子在B2S3表面的扩散势垒小于在AlP (0.26 eV)[44]、MnC (0.174 eV)[45]和乙硼烷(hydrogen boride,HB)材料(0.32 eV)[46]表面的扩散势垒。扩散势垒越低,材料的充放电性能越好,进一步说明B2S3材料具有优良的阳极材料属性。
-
可充电金属离子电池的潜在阳极材料需要具有合适的工作电压和相对较大的比容量。锂/钠离子之间的静电斥力随着吸附浓度的提高而增强,锂/钠离子在B2S3单层时相互作用减弱,导致吸附能随着碱金属离子浓度的升高而下降。为了探索锂/钠离子在单层B2S3中的最大存储容量,逐步增加吸附在B2S3表面的离子数。通过添加锂/钠离子数目,发现在B2S3的2×2×1超胞中最多可以吸附4个锂离子或者6个钠离子。此时,吸附锂/钠离子的最大理论容量分别为227.2 mAh/g和340.8 mAh/g。此外,还计算了锂/钠离子与B2S3单层相互作用时的开路电压。一般认为,电压范围在0.1 V~1.0 V是阳极材料的首选,并且被认为是最大能量密度的最佳形式[47]。从图 11可以看出,锂离子个数在0 < x < 4范围时,随着锂离子数量的增加,电压电位范围为0.09 V~1.0 V (平均值为0.515 V);对于钠离子,在0 < x < 6范围时,随着钠离子数量的增加,电压电位范围为0.015 V~0.41 V(平均值为0.162 V)。更小的平均电压可以实现更高的能量密度,有效避免枝晶的产生,确保锂/钠离子电池更高的稳定性和安全性。
-
阳极材料的电子导电性也是影响其速率性能的重要因素之一。如图 12所示,通过计算B2S3的总态密度和投影态密度研究吸附前后的电子结构。在不同吸附浓度下,B2S3单层一致保持金属性。从吸附浓度最高的总态密度和投影态密度中观察到态密度在费米能级上增加,这意味着锂/钠离子吸附增强了B2S3单层的电子导电性。在锂/钠离子嵌入过程中,电极的电子导电性得到了提高。
锂/钠离子电池负极材料的循环性能也是重要性质之一,充放电过程中的结构变化会降低循环寿命和容量。分析B2S3单层吸附锂/钠离子的力学性能,Li4@B8S12弹性常数为C11=28.58 N/m,C12=6.75 N/m,C66=10.37 N/m;Na6@B8S12弹性常数为C11=23.63 N/m,C12=5.05 N/m,C66=9.37 N/m。研究结果仍然满足玻恩准则,证实了B2S3阳极材料可以缓冲循环时的膨胀/收缩,延长循环寿命。此外,通过最大吸附浓度的晶格常数的变化评价循环性能:Li4B8S12和Na6B8S12的体积膨胀率分别为2.5%和2.1%,微小的晶格膨胀有利于B2S3单层实现电池的长期循环寿命。
半导体光电材料B2S3在离子电池中的应用性质研究
Research on application properties of semiconductor optoelectronic material B2S3 in ion battery
-
摘要: 为了满足新型可再生能源技术对电极材料具有合适的结构、电子和机械性能的要求, 采用第一性原理, 计算研究了具有动态、机械和热稳定性B2S3半导体光电材料的电化学性能及其潜在应用。结果表明, 作为阳极材料,B2S3单层具有合适的存储容量(Li: 227.2 mAh/g;Na: 340.8 mAh/g)、超低扩散势垒(Li: 0.23 eV;Na: 0.14 eV)和低平均开路电压(Li: 0.515 eV;Na: 0.162 eV),在充放电过程中具有相对较小的晶格变化(Li: 2.5%;Na: 2.1%);在不同浓度的锂/钠离子吸附下,B2S3单层的金属特性保持不变,具有良好的导电性和电池运行稳定性,表明B2S3半导体光电材料是一种有吸引力的锂/钠离子电池阳极候选材料。B2S3单层的优异特性可促使进一步探索其作为锂/钠离子电池阳极材料的应用。Abstract: In order to meet the requirements of new renewable energy technologies for electrode materials with appropriate structural, electronic, and mechanical properties, first principles calculations were used to study the electrochemical properties and potential applications of B2S3 semiconductor optoelectronic materials with dynamic, mechanical, and thermal stability. The research results indicate that as an anode material, B2S3 monolayer has suitable storage capacity (Li: 227.2 mAh/g; Na: 340.8 mAh/g), ultra-low diffusion barrier (Li: 0.23 eV; Na: 0.14 eV), and low average open circuit voltage (Li: 0.515 eV; Na: 0.162 eV). It has relatively small lattice changes (Li: 2.5%; Na: 2.1%) during charge and discharge processes. Under different concentrations of lithium/sodium ion adsorption, the metal properties of B2S3 monolayer remain unchanged, exhibiting good conductivity and battery stability. This study indicates that B2S3 semiconductor optoelectronic material is an attractive anode candidate material for lithium/sodium ion batteries. The excellent properties of B2S3 monolayer can further explore its application as an anode material for lithium/sodium ion batteries.
-
Key words:
- materials /
- Li/Na ion batteries /
- density functional theory /
- B2S3
-
表 1 锂/钠离子对B2S3表面的吸附位置、吸附能、电荷转移量和吸附高度
Table 1. Adsorption position, adsorption energy, charge transfer amount, and adsorption height of Li/Na ions on the B2S3 surface
metal adsorption position adsorption evergy/eV charge transfer amount|e| adsorption height/nm Li H1 -0.7 0.82 0.135 H2 -0.58 0.86 0.144 Na H1 -0.48 0.84 0.125 H2 -0.27 0.83 0.129 TB -0.11 0.88 0.142 -
[1] GEIM A K, NOVOSELOV K S. The rise and rise of graphene[J]. Nature Nanotechnology, 2007, 6(3): 183-191. [2] JANA S, THOMAS S, LEE C H, et al. B3S monolayer: Prediction of a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2019, A7(20): 12706-12712. [3] ZHANG Y B, ZHOU M, YANG M Y, et al. Experimental realization and computational investigations of B2S2 as a new 2D material with potential applications[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 32330-32340. [4] KANSARA S, KANG H Y, RYU S J, et al. Basic guidelines of first-principles calculations for suitable selection of electrochemical Li storage materials: A review[J]. Journal of Materials Chemistry, 2023, A11(45): 24482-24518. [5] 孙浩, 徐建明, 张宏超, 等. 连续激光辐照三结GaAs太阳电池温度场仿真[J]. 激光技术, 2018, 42(2): 239-244. SUN H, XU J M, ZHANG H Ch, et al. Simulation of temperature field of continuous laser irradiation three-junction GaAs solar cell[J]. Laser technology, 2018, 42(2): 239-244 (in Chinese). [6] 杨欢, 陆健, 周大勇, 等. 1070 nm连续激光辐照三结GaAs太阳电池的实验研究[J]. 激光技术, 2017, 41(3): 318-321. YANG H, LU J, ZHOU D Y, et al. Experimental study of 1070 nm continuous laser irradiation of three-junction GaAs solar cells[J]. Laser Technology, 2017, 41(3): 318-321(in Chinese). [7] 谭宇, 陆健. 连续激光辐照三结GaAs太阳电池热应力场研究[J]. 激光技术, 2020, 44(2): 250-254. TAN Y, LU J. Study on thermal stress field of three-junction GaAs solar cells irradiated by continuous laser[J]. Laser Technology, 2020, 44(2): 250-254(in Chinese). [8] 江达飞, 方晓敏, 廖东进. 双光栅结构薄膜太阳能电池的优化[J]. 激光技术, 2019, 43(6): 850-854. JIANG D F, FANG X M, LIAO D J. Optimization of thin film solar cells with double grating structure[J]. Laser Technology, 2019, 43(6): 850-854 (in Chinese). [9] BHANDARI A, PENG Ch, DZIEDZIC J, et al. Li nucleation on the graphite anode under potential control in Li-ion batteries[J]. Journal of Materials Chemistry, 2022, A10(21): 11426-11436. [10] HE X J, TANG A W, LI Y, et al. Theoretical studies of SiC van der Waals heterostructures as anodes of Li-ion batteries[J]. Applied Surface Science, 2021, 563(3): 150269. [11] JANA S, THOMAS S, LEE C H, et al. Rational design of a PC3 monolayer: A high-capacity, rapidly charging anode material for sodium-ion batteries[J]. Carbon, 2020, 157: 420-426. doi: 10.1016/j.carbon.2019.10.086 [12] YU X H, CHEN X H, WANG X, et al. Metallic B2C monolayer as a promising anode material for Li/Na ion storage[J]. Chemical Engineering Journal, 2021, 406: 126812. doi: 10.1016/j.cej.2020.126812 [13] YUAN G H, BO T, QI X, et al. Monolayer Zr2B2: A promising two-dimensional anode material for Li-ion batteries[J]. Applied Surface Science, 2019, 480: 448-453. doi: 10.1016/j.apsusc.2019.02.222 [14] EFTELTHARI A. Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics[J]. Applied Materials Today, 2017, 8: 1-17. doi: 10.1016/j.apmt.2017.01.006 [15] VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 1-11. [16] WANG Zh H, ZHOU X F, ZHANG X M, et al. Phagraphene: A low-energy graphene allotrope composed of 5-6-7 carbon rings with distorted Dirac cones[J]. Nano Letters, 2015, 15(9): 6182-6186. doi: 10.1021/acs.nanolett.5b02512 [17] XU L Ch, WANG R Zh, MIAO M Sh, et al. Two dimensional Dirac carbon allotropes from graphene[J]. Nanoscale, 2014, 6(2): 1113-1118. doi: 10.1039/C3NR04463G [18] LI X B, XIE Sh Y, ZHENG H, et al. Boron based two-dimensional crystals: Theoretical design, realization proposal and applications[J]. Nanoscale, 2015, 7(45): 18863-18871. doi: 10.1039/C5NR04359J [19] ZHANG Zh H, YANG Y, GAO G Y, et al. Two-dimensional boron monolayers mediated by metal substrates[J]. Angewandte Chemie-International Edition, 2015, 54(44): 13214-13218. [20] LALMI B, OUGHADDOU H, ENRIQUEZ H, et al. Epitaxial growth of a silicene sheet[J]. Applied Physics Letters, 2010, 97(22): 223109. doi: 10.1063/1.3524215 [21] DAVILA M, XIAN L, CAHANGIROV S, et al. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene[J]. New Journal of Physics, 2014, 16(9): 095002. doi: 10.1088/1367-2630/16/9/095002 [22] XU Y, YAN B H, ZHANG H J, et al. Large-gap quantum spin hall insulators in tin films[J]. Physical Review Letters, 2013, 111(13): 136804. doi: 10.1103/PhysRevLett.111.136804 [23] TAN Ch, JI G L. Semi-supervised incremental feature extraction algorithm for large-scale data stream[J]. Concurrency & Computation Practice & Experience, 2017, 29(6): e3914. [24] TAO H C, GAO Y N, TALREJA N, et al. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion[J]. Journal of Materials Chemistry, 2017, A5(16): 7257-7284. [25] BHATNAGAR M, GARDELLA M, GIORDANO M C, et al. Broadband and tunable light harvesting in nanorippled MoS2 ultrathin films[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13508-13516. [26] DING W, HU L, DAI J M, et al. Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields[J]. ACS Nano, 2019, 13(2): 1694-1702. [27] DOLAI S, MAITI P, GHORAI A, et al. Exfoliated molybdenum disulfide-wrapped CdS nanoparticles as a nano-heterojunction for photo-electrochemical water splitting[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 438-448. [28] WANG G Zh, ZHI Y, BO M L, et al. 2D hexagonal boron nitride/cadmium sulfide heterostructure as a promising water-splitting photocatalyst[J]. Physica Status Solidi B: Basic Solid State Physics, 2020, 257(1): 1900431. [29] CHEREDNICHENKO K A, MUKHANOV V A, WANG Zh H, et al. Discovery of new boron-rich chalcogenides: Orthorhombic B6X (X=S, Se)[J]. Scientific Reports, 2020, 10(1): 9277. [30] FAN D, YANG Ch Ch, LU Sh H, et al. Two-dimensional boron monosulfides: semiconducting and metallic polymorphs[J]. Arxiv Preprint Arxiv, 2018, 1803: 03459. [31] MISHRA P, SINGH D, SONVANE Y, et al. 2D monolayer boron sulfide as an efficient material for optical nanodevices[C]//AIP Conference Proceedings. New York, USA: AIP Publishing, 2020: 130039. [32] KRESSE F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review, 1996, B54(16): 11169-11186. [33] QIN G Zh, QIN Zh Zh, WANG H M, et al. On the diversity in the thermal transport properties of graphene: A first-principles-benchmark study testing different exchange-correlation functionals[J]. Computational Materials Science, 2018, 151: 153-159. [34] TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm without lattice bias[J]. Journal of Physics, 2009, 21(8): 084204. [35] KHOSSOSSI N, BANERJEE A, BENHOURIA Y, et al. Ab initio study of a 2D h-BAs monolayer: A promising anode material for alkali-metal ion batteries[J]. Physical Chemistry Chemical Physics, 2019, 21(33): 18328-18337. [36] CHEN Ch Ch, GAO L S, ABDURYIM E, et al. Two-dimensional PC3 monolayer as promising hosts of Li-ion storage: A first-principles calculations study[J]. Colloids and Surfaces, 2024, A685: 133313. [37] KUAI Y, CHEN Ch Ch, GAO Sh L, et al. Two-dimensional SiP3 monolayer as promising anode with record-high capacity and fast diffusion for Alkali-ion battery[J]. Applied Surface Science, 2022, 586: 152510. [38] LIN J H, CHEN X W, ZHANG B F, et al. Two dimensional twin T-graphene: Monolayer for visible-light photocatalytic water splitting and bulk for anode material of magnesium batteries[J]. RSC Advances, 2022, 12(47): 30349-30358. [39] ADHIKARY S, DUTTA S, MOHAKUD S. Antiferromagnetic spin ordering in two-dimensional honeycomb lattice of SiP3[J]. Nanoscale Advances, 2021, 3(8): 2217-2221. [40] LI H T, WANG H Y, YAN L, et al. A novel two-dimensional beryllium diphosphide (BeP2) with superconductivity: The first-principles exploration[J]. Physical Chemistry Chemical Physics, 2021, 23(22): 12834-12841. [41] WU Y. First principles study of borene-based 2D materials as anode for lithium/sodium ion batteries[D]. Jilin: Changchun University of Science and Technology, 2020: 13-18(in Chinese). [42] GUO Y H, BO T, WU Y Y, et al. YS2 monolayer as a high-efficient anode material for rechargeable Li-ion and Na-ion batteries[J]. Solid State Ionics, 2020, 345: 115187. [43] POLLAK E, GENG B S, JEON K J, et al. The interaction of Li+ with single-layer and few-layer graphene[J]. Nano Letters, 2010, 10(9): 3386-3388. [44] YI Sh Y, LIU G D, LIU Zh X, et al. Double-layer honeycomb AIP: A promising anode material for Li-, Na-, and K-ion batteries[J]. Journal Physical Chemistry, 2020, C124(5): 2978-2986. [45] CHEN Q Y, WANG H Ch, LI H, et al. Two-dimensional MnC as a potential anode material for Na/K-ion batteries: A theoretical study[J]. Journal of Molecular Modeling, 2020, 26(4): 1-6. [46] MAKAREMI M, MORTAZAVI B, SINGH C V. 2D hydrogenated graphene-like borophene as a high capacity anode material for improved Li/Na ion batteries: A first principles study[J]. Materials Today Energy, 2018, 8: 22-28. [47] CHEN Ch Ch, GUU Sh N, et al. Metallic 1H-BeP2 monolayer as a potential anode material for Li-ion/Na-ion batteries: A first principles study[J]. Colloids and Surfaces, 2023, A662: 131037.