高级检索

2维材料/Ⅳ族体材料异质结多光谱光晶体管

林光杨, 蔡欣慰, 李硕, 汪建元, 李成

林光杨, 蔡欣慰, 李硕, 汪建元, 李成. 2维材料/Ⅳ族体材料异质结多光谱光晶体管[J]. 激光技术, 2024, 48(6): 856-866. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.011
引用本文: 林光杨, 蔡欣慰, 李硕, 汪建元, 李成. 2维材料/Ⅳ族体材料异质结多光谱光晶体管[J]. 激光技术, 2024, 48(6): 856-866. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.011
LIN Guangyang, CAI Xinwei, LI Shuo, WANG Jianyuan, LI Cheng. Multi-spectral phototransistor based on 2-D materials/group Ⅳ bulk materials heterojunctions[J]. LASER TECHNOLOGY, 2024, 48(6): 856-866. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.011
Citation: LIN Guangyang, CAI Xinwei, LI Shuo, WANG Jianyuan, LI Cheng. Multi-spectral phototransistor based on 2-D materials/group Ⅳ bulk materials heterojunctions[J]. LASER TECHNOLOGY, 2024, 48(6): 856-866. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.011

2维材料/Ⅳ族体材料异质结多光谱光晶体管

基金项目: 

国家自然科学基金资助项目 62074134

国家自然科学基金资助项目 62104205

国家重点研发计划资助项目 2018YFB2200103

详细信息
    通讯作者:

    李成, lich@xmu.edu.cn

  • 中图分类号: TN304.054;TH362

Multi-spectral phototransistor based on 2-D materials/group Ⅳ bulk materials heterojunctions

  • 摘要: 多光谱探测在工业等很多领域有着重要应用,研制集多波段响应于一体的高性能宽谱光电探测器已成为光学成像技术发展的重要研究方向之一。简要介绍了当前宽谱探测器的研究进展,阐述了2维/3维混合维范德华异质结在宽光谱探测器研制的前景;总结了本课题组在2维过渡金属二硫化物/3维Ⅳ族体材料范德华异质结宽光谱光晶体管研制方面取得的一些进展,其中包括传统的NPN型、PNP型光晶体管以及基于肖特基结集电极的新型光晶体管,并对这些混合维光晶体管的应用前景进行了展望。
    Abstract: Multi-spectral detection had significant applications in many fields of industry. High-performance broadband photodetectors integrating multi-band responses became one of the important research directions of optical imaging technology. Current research progress of broadband photodetectors was briefly introduced.The prospects of 2-D/3-D mix-dimensional van der Waals (VDW) heterojunctions in the development of broadband photodetectors were elaborated. Some progress of broadband phototransistors based on 2-D transition metal dichalcogenides/3-D group Ⅳ materials VDW heterojunctions by the research group, including traditional NPN-type, PNP-type phototransistors and emerging phototransistors with Schottky junction collectors were reviewed.Ultimately, the applications of these phototransistors were prospected.
  • 图  1   制备的N-MoSe2/P-Ge/N-Ge光晶体管[36]

    a—3维结构示意图 b—光学显微镜图 c—MoSe2表面两电极之间的I-V曲线 d—Vc, e=2.0 V偏压下的光响应谱e—能带示意图

    Figure  1.   The fabricated N-MoSe2/P-Ge/N-Ge phototransistor[36]

    a—3-D schematic structure b—optical image c—I-V curves between two electrodes on MoSe2 d—response spectrum under Vc, e=2.0 V e—bandgap alignment

    图  2   N-MoSe2/P-Ge/N-Ge光晶体管的光响应特性[36]

    a—650 nm激光照射下的I-V曲线 b—Vc, e=2.0 V时,650 nm激光照射下的光增益系数拟合 c—650 nm激光照射下的瞬态响应 d—1550 nm激光照射下的I-V曲线 e—Vc, e=2.0 V时,1550 nm激光照射下的光增益系数拟合 f—1550 nm激光照射下的瞬态响应

    Figure  2.   Photoreponse properties of N-MoSe2/P-Ge/N-Ge phototransistor[36]

    a—I-V curves under 650 nm laser illumination b—fitting of gain value at 650 nm under Vc, e=2.0 V c— transient photoreponse under 650 nm laser illumination d—I-V curves under 1550 nm laser illumination e—fitting of gain value at 1550 nm under Vc, e=2.0 V f—transient photoreponse under 1550 nm laser illumination

    图  3   N-MoSe2/P-GeSn/N-Ge光晶体管的光响应特性[46]

    a—1310 nm激光照射下的输出特性曲线 b—1310 nm激光照射下的响应度(黑色)和光生电流(红色) c—1310 nm激光照射下的瞬态光响应 d—1550 nm激光照射下的输出特性曲线 e—1550 nm激光照射下的响应度(黑色)和光生电流(红色) f—1550 nm激光照射下的瞬态光响应

    Figure  3.   Photoresponse propertiesof N-MoSe2/P-GeSn/N-Ge phototransistor[46]

    a—output characteristics under 1310 nm laser illumination b—responsivity (black) and photocurrent (red)under 1310 nm laser illumination c—transient photoreponse under 1310 nm laser illumination d—output characteristics under 1550 nm laser illumination e—responsivity (black) and photocurrent (red) under 1550 nm laser illumination f—transient photoreponse under 1550 nm laser illumination

    图  4   N-MoSe2/P-GeSn/N-Ge光晶体管的宽谱性能分析[46]

    a—Vc, e=1.0 V偏压下的光响应谱(黑色曲线)和比探测率谱(红色曲线) b—能带示意图

    Figure  4.   Broadband photoresponse analysis of N-MoSe2/P-GeSn/N-Ge phototransistor[46]

    a—responsespectrum and detectivity spectrum under Vc, e=1.0 V b—bandgap alignment

    图  5   以肖特基结为集电极的P-WSe2/N-Ge/Ti&Au光晶体管[53]

    a—Raman光谱 b—光学显微镜图 c—WSe2上Pt和Au电极之间退火前后的I-V曲线 d—N-Ge/Ti&Au肖特基结的I-V曲线 e—Ve, c>0 V下的响应谱f—能带排布图

    Figure  5.   P-WSe2/N-Ge/Ti&Au phototransistor with a Schottky junction collector[53]

    a—Raman spectra b—optical image c—I-V curves of two Pt and Au electrodes on WSe2 before and after annealing d—I-V curve of N-Ge/Ti&Au Schottky junction e—response spectrum under Ve, c > 0 V f—bandgap alignment

    图  6   P-WSe2/N-Ge/Ti&Au光晶体管的光响应特性[53]

    a—405 nm激光照射下的I-V曲线 b—405 nm激光照射下的光增益系数拟合 c—405 nm激光照射下的瞬态光响应 d—1550 nm激光照射下的I-V曲线 e—1550 nm激光照射下的光增益系数拟合 f—1550 nm激光照射下的瞬态光响应

    Figure  6.   Photoresponse properties of P-WSe2/N-Ge/Ti&Au phototransistor[53]

    a—I-V characteristics under 405 nm laser illumination b—fitting of gain value at 405 nm c—transient photoreponse under 405 nm laser illumination d—I-V characteristics under 1550 nm laser illumination e—fitting of gain value at 1550 nm f—transient photoreponse under 1550 nm laser illumination

    图  7   具有环形浅槽Al/N-Ge肖特结的P-WSe2/N-Ge/Al光晶体管[54]

    a—结构示意图电场分布模拟图 b—光响应谱 c—405 nm光照下的瞬态光响应 d—1550 nm光照下的瞬态光响应

    Figure  7.   P-WSe2/N-Ge phototransistor with an annular shallow-trench Al/N-Ge Schottky junction[54]

    a—schematic structure and simulated electric field distribution b—response spectrum c—transient photoresponseat 405 nm d—transient photoresponse at 1550 nm

    表  1   Ge基混合维光晶体管与Ge基范德华异质结探测器性能比较

    Table  1   Performance comparison of Ge-based mix-dimensional photo transistors and Ge-based VDW heterojunction photodetector

    器件结构 响应波长/nm 响应度/(A·W-1) 响应时间/ms 比探测率/Jones 参考文献
    WSe2/Ge/Al HPT 400~1700 124@1550 nm 0.22 1.6×1011 本课题组
    MoSe2/Ge HPT 450~1600 18.35@1550 nm 0.575 8.34×1010 本课题组
    MoTe2/Ge 915 12460@915 nm 5 3.3×1012 [55]
    WSe2/Ge 520~1550 6.4@1550 nm 0.03 2.5×1010 [41]
    MoS2/Ge 106~1550 3@1550 nm 10 [40]
    MoSe2/Ge 400~1800 35@1550 nm 0.0135 1.0×1011 [56]
    下载: 导出CSV
  • [1]

    MARTYNIUK P, ROGALSKI A. Van der Waals two-color infrared detection[J]. Light: Science & Applications, 2022, 11(1): 27.

    [2]

    WANG K, WANG H, CHEN C, et al. High-performance ultraviolet photodetector based on single-crystal integrated self-Supporting 4H-SiC nanohole arrays[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23457-23469.

    [3]

    FENG S, LIU Z, FENG L, et al. High-performance self-powered ultraviolet photodetector based on Ga2O3/GaN heterostructure for optical imaging[J]. Journal of Alloys and Compounds, 2023, 945: 169274. DOI: 10.1016/j.jallcom.2023.169274

    [4]

    HUANG S, WU Q, JIA Z, et al. Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation[J]. Advanced Optical Materials, 2020, 8(7): 1901808. DOI: 10.1002/adom.201901808

    [5]

    WANG L, ZHANG Y, WANG B, et al. High-performance infrared Ge-based plasmonic photodetector enhanced by dual absorption mechanism[J]. APL Photonics, 2020, 5(9): 096104. DOI: 10.1063/5.0021187

    [6]

    LIU H, WANG J, GUO D, et al. Design and fabrication of high performance InGaAs near infrared photodetector[J]. Nanomaterials, 2023, 13(21): 2895. DOI: 10.3390/nano13212895

    [7]

    YIN X, ZHANG C, GUO Y, et al. PbS QD-based photodetectors: Future-oriented near-infrared detection technology[J]. Journal of Materials Chemistry, 2021, C9(2): 417-438.

    [8]

    GAWRON W, DAMI CKI A, KO NIEWSKI A, et al. Multiple long wavelength infrared MOCVD grown HgCdTe photodetectors for high temperature conditions[J]. IEEE Sensors Journal, 2021, 21(4): 4509-4516. DOI: 10.1109/JSEN.2020.3035246

    [9] 孙童, 关晓宁, 张凡, 等. 基于k·p方法的二类超晶格红外探测器仿真进展[J]. 激光技术, 2023, 47(4): 439-453. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.001

    SUN T, GUAN X N, ZHANG F, et al. Progress in simulation of type-Ⅱ superlattice infrared detectors based on the k·p method[J]. Laser Technology, 2023, 47(4): 439-453 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.04.001

    [10]

    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI: 10.1126/science.1102896

    [11]

    SUSARLA S, KUTANA A, HACHTEL J A, et al. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap[J]. Advanced Materials, 2017, 29(35): 1702457. DOI: 10.1002/adma.201702457

    [12]

    WANG J, MA F, LIANG W, et al. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures[J]. Materials Today Physics, 2017, 2: 6-34. DOI: 10.1016/j.mtphys.2017.07.001

    [13]

    LI L, YU Y, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. DOI: 10.1038/nnano.2014.35

    [14]

    WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the Synthesis of 2D MXenes[J]. Advanced Materials, 2021, 33(39): 2103148. DOI: 10.1002/adma.202103148

    [15]

    FENG W, WU J B, LI X, et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response[J]. Journal of Materials Chemistry, 2015, C3(27): 7022-7028.

    [16]

    ZHENG Z Q, YAO J D, YANG G W. Growth of centimeter-scale high-quality In2Se3 films for transparent, flexible and high performance photodetectors[J]. Journal of Materials Chemistry, 2016, C4(34): 8094-8103.

    [17]

    CHEN X, LU X, DENG B, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nature Communications, 2017, 8(1): 1672.

    [18] 程碑彤, 代千, 谢修敏, 等. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601-609. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.004

    CHEN B T, DAI Q, XIE X M, et al. Research progress of single-photon detectors[J]. Laser Technology, 2022, 46(5): 601-609 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.05.004

    [19]

    SHIN G H, PARK C, LEE K J, et al. Ultrasensitive phototransistor based on WSe2-MoS2 van der Waals heterojunction[J]. Nano Letters, 2020, 20(8): 5741-5748.

    [20]

    LONG M, LIU E, WANG P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259.

    [21]

    JIN H J, PARK C, LEE K J, et al. Ultrasensitive WSe2/α-In2Se3 NIR photodetector based on ferroelectric gating effect[J]. Advanced Materials Technologies, 2021, 6(11): 2100494.

    [22]

    YAN W, SHRESHA V R, JEANGROS Q, et al. Spectrally selective mid-wave infrared detection using Fabry-Pérot cavity enhanced black phosphorus 2D photodiodes[J]. ACS Nano, 2020, 14(10): 13645-13651.

    [23]

    MAO J, YU Y, WANG L, et al. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode[J]. Advanced Science, 2016, 3(11): 1600018.

    [24]

    WANG B, WANG L, ZHANG Y, et al. Mixed-dimensional MoS2/Ge heterostructure junction field-effect transistors for logic operation and photodetection[J]. Advanced Functional Materials, 2022, 32(10): 2110181.

    [25]

    SHU K, GAO W, WAN F, et al. High-performance broadband photodetectors based on N-MoS2/P-Ge0.9Sn0.1 heterojunctions[J]. ACS Applied Electronic Materials, 2021, 3(7): 3218-3225.

    [26]

    JAIN S K, LOW M X, TAYLOR P D, et al. 2D/3D hybrid of MoS2/GaN for a high-performance broadband photodetector[J]. ACS Applied Electronic Materials, 2021, 3(5): 2407-2414.

    [27]

    JIA C, HUANG X, WU D, et al. An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-Ⅱ Zener heterojunction[J]. Nanoscale, 2020, 12(7): 4435-4444.

    [28]

    FANG C, WANG H, SHEN Z, et al. High-performance photodetectors based on lead-free 2D Ruddlesden-Popper perovskite/MoS2 heterostructures[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8419-8427.

    [29]

    KROEMER H. Heterostructure bipolar transistors and integrated circuits[J]. Proceedings of the IEEE, 1982, 70(1): 13-25.

    [30]

    MAO Y, XU P, WU Q, et al. Self-powered high-detectivity lateral MoS2 Schottky photodetectors for near-infrared operation[J]. Advanced Electronic Materials, 2021, 7(3): 2001138.

    [31]

    KROEMER H. Theory of a wide-gap emitter for transistors[J]. Proceedings of the IRE, 1957, 45(11): 1535-1537.

    [32]

    YAO J, YANG G. 2D material broadband photodetectors[J]. Nanoscale, 2020, 12(2): 454-476.

    [33]

    ANG K W, YU M B, LO G Q, et al. Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime[J]. IEEE Electron Device Letters, 2008, 29(10): 1124-1127.

    [34]

    SORIANELLO V, de ANGELIS G, de IACOVO A, et al. High responsivity SiGe heterojunction phototransistor on silicon photonics platform[J]. Optics Express, 2015, 23(22): 28163-28169.

    [35]

    FROUNCHI M, TZINTZAROV G N, ILDEFONSO A, et al. High responsivity Ge phototransistor in commercial CMOS Si-photonics platform for monolithic optoelectronic receivers[J]. IEEE Electron Device Letters, 2021, 42(2): 196-199.

    [36]

    LI H, CAI X, WANG J, et al. Ultrahigh sensitive phototransistor based on MoSe2/Ge mixed-dimensional heterojunction for visible to short-wave infrared broadband photodetection[J]. IEEE Transactions on Electron Devices, 2023, 70(12): 6446-6451.

    [37]

    DUAN X, WANG C, PAN A, et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges[J]. Chemical Society Reviews, 2015, 44(24): 8859-8876.

    [38]

    WU Z, WANG C, HUANG W, et al. Ohmic contact formation of sputtered TaN on n-type Ge with lower specific contact resistivity[J]. ECS Journal of Solid State Science and Technology, 2012, 1(1): 30-33.

    [39]

    LIN G, LIANG D, YU C, et al. Broadband 400-2400 nm Ge heterostructure nanowire photodetector fabricated by three-dimensional Ge condensation technique[J]. Optics Express, 2019, 27(22): 32801-32809.

    [40]

    HWANG A, PARK M, PARK Y, et al. Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure[J]. Science Advances, 2021, 7(51): eabj2521.

    [41]

    LEE C H, PARK Y, YOUN S, et al. Design of P-WSe2/N-Ge heterojunctions for high-speed broadband photodetectors[J]. Advanced Functional Materials, 2022, 32(4): 2107992.

    [42]

    STANGE D, WIRTHS S, VON DEN DRIESCH N, et al. Optical transitions in direct-bandgap Ge1-xSnx alloys[J]. ACS Photonics, 2015, 2(11): 1539-1545.

    [43]

    CHANG G E, BASU R, MUKHOPADHYAY B, et al. Design and modeling of GeSn-based heterojunction phototransistors for communication applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 425-433.

    [44]

    WANG W, DONG Y, LEE S Y, et al. Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range[J]. Optics Express, 2017, 25(16): 18502-18507.

    [45]

    HUNG WT, BARSHILIA D, BASU R, et al. Silicon-based high-responsivity GeSn short-wave infrared heterojunction phototransistors with a floating base[J]. Optics Letters, 2020, 45(5): 1088-1091.

    [46]

    CAI X, LI S, QIAN J, et al. High-performance N-MoSe2/P-GeSn/N-Ge van der Waals heterojunction phototransistor for short-Wave infrared photodetection[J]. Advanced Optical Materials, 2023, 12(5): 2301724.

    [47]

    LIN G, QIAN J, DING H, et al. Harvesting strong photoluminescence of physical vapor deposited GeSn with record high deposition temperature[J]. Journal of Physics, 2023, D56(35): 355104.

    [48]

    LIN G, QIAN K, DING H, et al. Effective strain relaxation of GeSn single crystal with Sn content of 16.5% on Ge grown by high-temperature sputtering[J]. Applied Surface Science, 2023, 623: 157086.

    [49]

    TRAN H, PHAM T, MARGETIS J, et al. Si-based GeSn photodetectors toward mid-infrared imaging applications[J]. ACS Photonics, 2019, 6(11): 2807-2815.

    [50]

    YANG T, DING H, CAI X, et al. Low-cost self-powered shortwave infrared photodetectors with GeSn/Ge multiple quantum wells grown by magnetron sputtering[J]. IEEE Electron Device Letters, 2023, 45(2): 156-159.

    [51]

    TRAN H, PHAM T, DU W, et al. High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging[J]. Journal of Applied Physics, 2018, 124(1): 013101.

    [52]

    ZHU S, LO G Q, YU M B, et al. Silicide Schottky-barrier phototransistor integrated in silicon channel waveguide for in-line power monitoring[J]. IEEE Photonics Technology Letters, 2009, 21(3): 185-187.

    [53]

    LI S, WU Q, DING H, et al. High gain, broadband P-WSe2/N-Ge van der Waals heterojunction phototransistor with a Schottky barrier collector[J]. Nano Research, 2023, 16(4): 5796-5802.

    [54]

    LI S, CAI X, DING H, et al. Visible to short-wave infrared broadband P-WSe2/N-Ge heterojunction phototransistor with an annular shallow-trench Schottky barrier collector[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2024, 18(1): 2300276.

    [55]

    CHEN W, LIANG R, ZHANG S, et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure[J]. Nano Research, 2020, 13(1): 127-132.

    [56]

    DHYANI V, DAS M, UDDIN W, et al. Self-powered room temperature broadband infrared photodetector based on MoSe2/germanium heterojunction with 35 A/W responsivity at 1550 nm[J]. Applied Physics Letters, 2019, 114(12): 121101.

图(7)  /  表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-04-16
  • 发布日期:  2024-11-24

目录

    /

    返回文章
    返回