-
以NPN型光晶体管为例(PNP型光晶体管类似),工作在共射放大模式下,光照时集电极电流Ic可表示为[29]:
$ I_{\mathrm{c}}=I_{\mathrm{e}}=I_{\mathrm{p}}+I_{\mathrm{d}}=(\beta+1)\left(I_{\mathrm{PO}}+I_{\mathrm{CBO}}\right) $
(1) 式中:Ie为发射极电流;Ip为集电极放大后的光电流;Id为集电极暗电流;β为光电流增益系数;ICBO为集电结反向饱和电流;IPO为初始光电流,可由下式计算[30]:
$ I_{\mathrm{P} 0}=q P_{\mathrm{i}}(h \nu) $
(2) 式中:q为单位电荷量;Pi为入射光功率;h为普朗克常数;ν为入射光子频率。假定内量子效率为1,由式(1)可知,光电流增益系数β可通过线性拟合Ip-IPO曲线的斜率得到。对于异质结光晶体管而言,其光电流增益系数β很大程度上取决于发射结的载流子注入比γ0。γ0可通过下式计算[31]:
$ \gamma_0=\frac{i_{\mathrm{N}, \mathrm{e}}}{i_{\mathrm{P}, \mathrm{e}}}=\frac{D_{\mathrm{N}} L_{\mathrm{P}} N_{\mathrm{d}}}{D_{\mathrm{p}} L_{\mathrm{N}} N_{\mathrm{a}}}\left(\frac{m_{\mathrm{P}, \mathrm{~h}} m_{\mathrm{P}, \mathrm{e}}}{m_{\mathrm{N}, \mathrm{~h}} m_{\mathrm{N}, \mathrm{e}}}\right)^{\frac{3}{2}} \exp \left(\frac{\Delta E_{\mathrm{g}}}{k T}\right) $
(3) 式中:iN, e和iP, e分别为异质结光晶体管的发射结在正向偏置时的电子电流和空穴电流;DN(DP)和LN(LP)分别表示电子(空穴)的扩散系数和扩散长度;Nd和Na分别是N型发射区和P型基区的掺杂浓度;mP, h(mP, e)和mN, h(mN, e)分别表示P型基区和N型发射区的空穴(电子)有效质量;k是玻尔兹曼常数;T为样品温度;ΔEg为发射区和基区间的带隙差。可以看到,通过提高异质结光晶体管发射区与基区之间的带隙差可以显著提高射基结的载流子注入比,从而增大光电流增益系数。
-
响应度R、比探测率D*和响应时间是反映探测器综合性能的几个常用指标。响应度表示探测器在光照下每单位光功率产生的光电流。对于异质结光晶体管,R可表示为[32]:
$ R=\frac{I_{\mathrm{p}}}{P_{\mathrm{i}}} $
(4) 比探测率是反映探测器辨别弱光信号的能力,可以用下式计算[32]:
$ D^*=\frac{\sqrt{A \Delta f}}{P_{\mathrm{NEP}}} $
(5) 式中:A为探测器的光敏面积;Δf为频率带宽;PNEP为等效噪声功率,表示探测器信噪比等于1时的最小入射光功率,可由下式获得[32]:
$ P_{\mathrm{NEP}}=\frac{i_{\mathrm{n}}}{R} $
(6) 式中:in为噪声电流,可通过下式计算[32]:
$ i_{\mathrm{n}}=\sqrt{\frac{1}{T} \int_0^T[I(t)-\langle I\rangle]^2 \mathrm{~d} t} $
(7) 式中:I(t)为t时刻电流;〈I〉为T时间周期内的平均电流。噪声的主要来源包括散粒噪声、热噪声和闪烁噪声(又称1/f噪声)。散粒噪声是由于形成电流的载流子的分散性造成的,其引起的噪声电流is可由下式计算[32]:
$ i_{\mathrm{s}}=\sqrt{2 q I_{\mathrm{d}} \Delta f} $
(8) 热噪声来源于载流子的随机运动,引起的噪声电流it可通过下式计算[32]:
$ i_{\mathrm{t}}=\sqrt{\frac{4 k T \Delta f}{R_{\mathrm{c}}}} $
(9) 式中:Rc为器件电阻。闪烁噪声是由于器件的局部不均匀引起电子的缓慢随机起伏,通常出现在较低频率上,引起的噪声电流if可表示为[32]:
$ i_{\mathrm{f}}=K \frac{\Delta f I_{\mathrm{d}}{ }^b}{f^a} $
(10) 式中:K为常数;f为器件工作频率;a和b为指数因子,与具体器件有关。当器件的暗电流较大时,散粒噪声通常占主导,此时比探测率可简单用下式估算[32]:
$ D^*=R \sqrt{\frac{A}{2 q I_{\mathrm{d}}}} $
(11) 响应时间用以评估探测器的最高工作频率。2维材料由于表面、界面存在许多载流子捕获中心,响应时间通常大于微秒量级。实验中,可通过脉冲光照射探测器,测量探测器产生的光电流脉冲上升沿或者下降沿来提取响应时间。测量光电流从稳定值的10%上升到90%或者从稳定值的90%降低到10%时所经历的时间,即为探测器的响应时间。
-
第2节中所设计制备的NPN型异质结光晶体管虽然具有较大的光响应度和较高的光电流增益系数,但器件暗电也较高。由式(1)可知,在无光照下,发射极的暗电流Ie为集电结反向饱和电流ICBO的β+1倍。采用带隙差大的异质结作为发射结在引入光电流增益的同时也将放大暗电流。因此,降低集电结反向饱和电流ICBO对于抑制光晶体管暗电流至关重要。选用带隙差大的异质结作为集电结可以抑制ICBO。但Ⅳ族体材料间(如Si、Ge、GeSn等)晶格失配大,异质外延易引入失配位错,且当选用带隙较大的Ⅳ族材料时将限制器件在长波段的响应。金属/半导体肖特基结有类似P-N结的整流特性,在电学上可等效为单边突变P-N结,且反向饱和电流随势垒高度的增加显著降低。此外,其还具有制备工艺简单的优势。2008年,ZHU等人[52]利用金属Si化物与Si的肖特基结作为集电极制备出了波导结构的Si光晶体管,其暗电流小于20 pA,光电流增益大于20。然而,具有肖特基势垒结构的Ge光晶体管仍未有报道。为此,进一步提出采用金属/Ⅳ族体材料的肖特基结作为集电结、2维材料/Ⅳ族体材料范德华异质结作为发射结以制备低暗电流、高光电流增益的光晶体管。由于费米能级被钉扎在价带顶附近,金属和N-Ge接触可以天然地形成很好的肖特基结。为此,基于金属和N-Ge的肖特基结构筑了P-WSe2/N-Ge范德华异质结光晶体管[53]。
选用多层2维WSe2薄片与N-Ge衬底构筑晶体管的发射结。多层WSe2的带隙约为1.37 eV,与Ge衬底之间具有高达0.70 eV的带隙差,同时可拓展器件在可见光波段的响应。选用N型掺杂浓度为1017cm-3的N-Ge衬底进行实验。利用机械剥离和湿法转移方式在N-Ge上转移厚约80 nm的2维WSe2薄片。图 5a中对比了Ge、2维WSe2薄片以及WSe2/Ge异质结的Raman光谱。WSe2/Ge异质结的Raman峰和Ge、WSe2薄片的Raman峰位很好地吻合,说明形成了良好的范德华异质结。选用Pt/Au和Ti/Au分别作为P-WSe2和N-Ge的接触电极,通过激光直接光刻、湿法腐蚀、磁控溅射金属、剥离等工艺制备出如图 5b所示的光晶体管。图 5c中的黑色和红色曲线分别为WSe2上两Pt和Au电极之间的I-V曲线。可以看到,经过退火后Pt和Au与WSe2形成了良好的欧姆接触。图 5d为N-Ge与Ti和Au接触的I-V曲线,插图为其半对数坐标下的曲线。N-Ge与Ti和Au之间的整流比高达103,说明Ti和Au与N-Ge形成了肖特基结,对I-V曲线进行拟合得到其势垒高度为0.54 eV。制备的P-WSe2/N-Ge/Ti&Au光晶体管中P-WSe2和N-Ge分别为发射区和基区,肖特基结为集电结。测试P-WSe2/N-Ge/Ti&Au光晶体管在发射极与集电极间电压Ve, c>0 V下的光响应谱,如图 5e所示。器件在400 nm~1700 nm具有明显的光响应,验证了宽谱探测能力。图 5f是器件工作在放大模式下(Ve, c>0 V)的能带排布图。P-WSe2与N-Ge之间的导带带阶几乎为0 eV,价带带阶约为0.70 eV。由于P-WSe2较薄,可见光在P-WSe2和N-Ge都有被吸收,而近红外光主要在N-Ge中被吸收。在N-Ge/Ti&Au肖特基结内建电场的作用下,光生电子向P-WSe2一侧输运并累计在基区,引起P-WSe2发射区向N-Ge基区注入大量的空穴,从而产生光电流增益。
图 6a和图 6b分别为器件不同光功率时405 nm和1550 nm光照射下的输出特性曲线。在Ve, c=1.0 V下,器件的暗电流约为140 μA。图 6b和图 6e中分别是当Ve, c=1.0 V时,在405 nm和1550 nm光照下集电极光生电流Ip随初始光生电流IPO的变化关系。对其做线性拟合提取得到斜率分别为146和80,说明光电流增益系数分别为145和79。在405 nm波长下,最大响应度为55 A/W,比探测率为4.7×1010 Jones;在1550 nm波长下,最大响应度为120 A/W,比探测率为1.0×1011 Jones。图 6c和图 6f中给出了器件在405 nm和1550 nm光脉冲下的瞬态光响应。在405 nm和1550 nm光照下,响应时间分别约为90 μs和300 μs,优于上一部分制备的NPN型范德华异质结光晶体管。器件在405 nm波长下具有更快的响应速度是由于短波在Ge的穿透深度小,而器件在表面电场分布更强所致。
上述P-WSe2/N-Ge/Ti&Au光晶体管虽取得了优越的光电性能,但器件结构未优化,仍有很大的改进空间。首先,P-WSe2上方的Pt/Au电极不透光,使得器件的有效光敏面积减小,降低了比探测率;其次,从图 5e可知,器件在600 nm附近可见光波段响应度弱,这是由于表面光反射调制所致;最后,器件在红外波段的响应速度较慢,这是由于红外光在Ge中穿透深度大,而Ge内部电场较弱所致。基于上述问题,对器件结构做了如下改进[54]:(a)采用3 nm Pt和110 nm氧化铟锡(indium tin oxide,ITO)作为P-WSe2的透明接触电极,提高有效光敏面积;(b)在P-WSe2/N-Ge表面沉积90 nm厚的SiO2作为600 nm附近可见光的抗反射膜,提高可见光响应;(c)将N-Ge/Ti&Au肖特基结做成环形浅槽结构,提高N-Ge体内电场强度。
图 7a是优化后的器件结构示意图及其工作在放大模式下的电场分布模拟图。为降低器件成本,选用1.2 μm厚的Al替代Ti和Au作为N-Ge接触金属形成肖特基结。可以看到,N-Ge体内的电场强度得到了很大的提高。但器件中心仍有少部分区域电场分布较弱,未来可以通过缩小器件尺寸提高整个区域电场。图 7b中给出了优化后器件在放大模式下的响应谱。可以看到,器件在600 nm附近可见光波段的响应度得到了很大的提高,器件在405 nm和1550 nm波长下的光电流增益系数分别提高到164和84,响应度分别为66 A/W和124 A/W,对应比探测率分别为8.7×1010 Jones和1.6×1011 Jones。图 7c和图 7d分别给出了优化后器件在405 nm和1550 nm脉冲光照下的瞬态光电流。经过优化后,405 nm波长下的响应时间略微减小到80 μs,而1550 nm波长下的响应时间大大降低至220 μs左右。表 1中对比了本课题组制备的WSe2/Ge/Al光晶体管、MoSe2/Ge光晶体管与文献报道的Ge范德华异质结光电探测器的性能。可以看出,相比文献报道的Ge范德华异质结光电探测器,制备的光晶体管在响应波长、响应度、响应时间和比探测率上具有更优异的综合性能。此外,受益于Ge/Al肖特基势垒的引入,WSe2/Ge/Al光晶体管相比MoSe2/Ge光晶体管具有更高的响应度、更快的响应时间和更大的比探测率。
表 1 Ge基混合维光晶体管与Ge基范德华异质结探测器性能比较
Table 1. Performance comparison of Ge-based mix-dimensional photo transistors and Ge-based VDW heterojunction photodetector
器件结构 响应波长/nm 响应度/(A·W-1) 响应时间/ms 比探测率/Jones 参考文献 WSe2/Ge/Al HPT 400~1700 124@1550 nm 0.22 1.6×1011 本课题组 MoSe2/Ge HPT 450~1600 18.35@1550 nm 0.575 8.34×1010 本课题组 MoTe2/Ge 915 12460@915 nm 5 3.3×1012 [55] WSe2/Ge 520~1550 6.4@1550 nm 0.03 2.5×1010 [41] MoS2/Ge 106~1550 3@1550 nm 10 — [40] MoSe2/Ge 400~1800 35@1550 nm 0.0135 1.0×1011 [56] 以肖特基结为集电极的光晶体管具有结构和工艺简单的优势,但此前仍未有基于Ge肖特基结的光晶体管的报道。本课题组的研究表明,具有肖特基势垒集电极的Ge范德华异质结光晶体管在抑制暗电流、提高比探测率和响应速度上具有很大的潜在优势, 可为高性能Ge基宽谱探测器的开发提供新策略。
2维材料/Ⅳ族体材料异质结多光谱光晶体管
Multi-spectral phototransistor based on 2-D materials/group Ⅳ bulk materials heterojunctions
-
摘要: 多光谱探测在工业等很多领域有着重要应用,研制集多波段响应于一体的高性能宽谱光电探测器已成为光学成像技术发展的重要研究方向之一。简要介绍了当前宽谱探测器的研究进展,阐述了2维/3维混合维范德华异质结在宽光谱探测器研制的前景;总结了本课题组在2维过渡金属二硫化物/3维Ⅳ族体材料范德华异质结宽光谱光晶体管研制方面取得的一些进展,其中包括传统的NPN型、PNP型光晶体管以及基于肖特基结集电极的新型光晶体管,并对这些混合维光晶体管的应用前景进行了展望。Abstract: Multi-spectral detection had significant applications in many fields of industry. High-performance broadband photodetectors integrating multi-band responses became one of the important research directions of optical imaging technology. Current research progress of broadband photodetectors was briefly introduced.The prospects of 2-D/3-D mix-dimensional van der Waals (VDW) heterojunctions in the development of broadband photodetectors were elaborated. Some progress of broadband phototransistors based on 2-D transition metal dichalcogenides/3-D group Ⅳ materials VDW heterojunctions by the research group, including traditional NPN-type, PNP-type phototransistors and emerging phototransistors with Schottky junction collectors were reviewed.Ultimately, the applications of these phototransistors were prospected.
-
图 1 制备的N-MoSe2/P-Ge/N-Ge光晶体管[36]
a—3维结构示意图 b—光学显微镜图 c—MoSe2表面两电极之间的I-V曲线 d—Vc, e=2.0 V偏压下的光响应谱e—能带示意图
Figure 1. The fabricated N-MoSe2/P-Ge/N-Ge phototransistor[36]
a—3-D schematic structure b—optical image c—I-V curves between two electrodes on MoSe2 d—response spectrum under Vc, e=2.0 V e—bandgap alignment
图 2 N-MoSe2/P-Ge/N-Ge光晶体管的光响应特性[36]
a—650 nm激光照射下的I-V曲线 b—Vc, e=2.0 V时,650 nm激光照射下的光增益系数拟合 c—650 nm激光照射下的瞬态响应 d—1550 nm激光照射下的I-V曲线 e—Vc, e=2.0 V时,1550 nm激光照射下的光增益系数拟合 f—1550 nm激光照射下的瞬态响应
Figure 2. Photoreponse properties of N-MoSe2/P-Ge/N-Ge phototransistor[36]
a—I-V curves under 650 nm laser illumination b—fitting of gain value at 650 nm under Vc, e=2.0 V c— transient photoreponse under 650 nm laser illumination d—I-V curves under 1550 nm laser illumination e—fitting of gain value at 1550 nm under Vc, e=2.0 V f—transient photoreponse under 1550 nm laser illumination
图 3 N-MoSe2/P-GeSn/N-Ge光晶体管的光响应特性[46]
a—1310 nm激光照射下的输出特性曲线 b—1310 nm激光照射下的响应度(黑色)和光生电流(红色) c—1310 nm激光照射下的瞬态光响应 d—1550 nm激光照射下的输出特性曲线 e—1550 nm激光照射下的响应度(黑色)和光生电流(红色) f—1550 nm激光照射下的瞬态光响应
Figure 3. Photoresponse propertiesof N-MoSe2/P-GeSn/N-Ge phototransistor[46]
a—output characteristics under 1310 nm laser illumination b—responsivity (black) and photocurrent (red)under 1310 nm laser illumination c—transient photoreponse under 1310 nm laser illumination d—output characteristics under 1550 nm laser illumination e—responsivity (black) and photocurrent (red) under 1550 nm laser illumination f—transient photoreponse under 1550 nm laser illumination
图 5 以肖特基结为集电极的P-WSe2/N-Ge/Ti&Au光晶体管[53]
a—Raman光谱 b—光学显微镜图 c—WSe2上Pt和Au电极之间退火前后的I-V曲线 d—N-Ge/Ti&Au肖特基结的I-V曲线 e—Ve, c>0 V下的响应谱f—能带排布图
Figure 5. P-WSe2/N-Ge/Ti&Au phototransistor with a Schottky junction collector[53]
a—Raman spectra b—optical image c—I-V curves of two Pt and Au electrodes on WSe2 before and after annealing d—I-V curve of N-Ge/Ti&Au Schottky junction e—response spectrum under Ve, c > 0 V f—bandgap alignment
图 6 P-WSe2/N-Ge/Ti&Au光晶体管的光响应特性[53]
a—405 nm激光照射下的I-V曲线 b—405 nm激光照射下的光增益系数拟合 c—405 nm激光照射下的瞬态光响应 d—1550 nm激光照射下的I-V曲线 e—1550 nm激光照射下的光增益系数拟合 f—1550 nm激光照射下的瞬态光响应
Figure 6. Photoresponse properties of P-WSe2/N-Ge/Ti&Au phototransistor[53]
a—I-V characteristics under 405 nm laser illumination b—fitting of gain value at 405 nm c—transient photoreponse under 405 nm laser illumination d—I-V characteristics under 1550 nm laser illumination e—fitting of gain value at 1550 nm f—transient photoreponse under 1550 nm laser illumination
图 7 具有环形浅槽Al/N-Ge肖特结的P-WSe2/N-Ge/Al光晶体管[54]
a—结构示意图电场分布模拟图 b—光响应谱 c—405 nm光照下的瞬态光响应 d—1550 nm光照下的瞬态光响应
Figure 7. P-WSe2/N-Ge phototransistor with an annular shallow-trench Al/N-Ge Schottky junction[54]
a—schematic structure and simulated electric field distribution b—response spectrum c—transient photoresponseat 405 nm d—transient photoresponse at 1550 nm
表 1 Ge基混合维光晶体管与Ge基范德华异质结探测器性能比较
Table 1. Performance comparison of Ge-based mix-dimensional photo transistors and Ge-based VDW heterojunction photodetector
器件结构 响应波长/nm 响应度/(A·W-1) 响应时间/ms 比探测率/Jones 参考文献 WSe2/Ge/Al HPT 400~1700 124@1550 nm 0.22 1.6×1011 本课题组 MoSe2/Ge HPT 450~1600 18.35@1550 nm 0.575 8.34×1010 本课题组 MoTe2/Ge 915 12460@915 nm 5 3.3×1012 [55] WSe2/Ge 520~1550 6.4@1550 nm 0.03 2.5×1010 [41] MoS2/Ge 106~1550 3@1550 nm 10 — [40] MoSe2/Ge 400~1800 35@1550 nm 0.0135 1.0×1011 [56] -
[1] MARTYNIUK P, ROGALSKI A. Van der Waals two-color infrared detection[J]. Light: Science & Applications, 2022, 11(1): 27. [2] WANG K, WANG H, CHEN C, et al. High-performance ultraviolet photodetector based on single-crystal integrated self-Supporting 4H-SiC nanohole arrays[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23457-23469. [3] FENG S, LIU Z, FENG L, et al. High-performance self-powered ultraviolet photodetector based on Ga2O3/GaN heterostructure for optical imaging[J]. Journal of Alloys and Compounds, 2023, 945: 169274. doi: 10.1016/j.jallcom.2023.169274 [4] HUANG S, WU Q, JIA Z, et al. Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation[J]. Advanced Optical Materials, 2020, 8(7): 1901808. doi: 10.1002/adom.201901808 [5] WANG L, ZHANG Y, WANG B, et al. High-performance infrared Ge-based plasmonic photodetector enhanced by dual absorption mechanism[J]. APL Photonics, 2020, 5(9): 096104. doi: 10.1063/5.0021187 [6] LIU H, WANG J, GUO D, et al. Design and fabrication of high performance InGaAs near infrared photodetector[J]. Nanomaterials, 2023, 13(21): 2895. doi: 10.3390/nano13212895 [7] YIN X, ZHANG C, GUO Y, et al. PbS QD-based photodetectors: Future-oriented near-infrared detection technology[J]. Journal of Materials Chemistry, 2021, C9(2): 417-438. [8] GAWRON W, DAMI CKI A, KO NIEWSKI A, et al. Multiple long wavelength infrared MOCVD grown HgCdTe photodetectors for high temperature conditions[J]. IEEE Sensors Journal, 2021, 21(4): 4509-4516. doi: 10.1109/JSEN.2020.3035246 [9] 孙童, 关晓宁, 张凡, 等. 基于k·p方法的二类超晶格红外探测器仿真进展[J]. 激光技术, 2023, 47(4): 439-453. doi: 10.7510/jgjs.issn.1001-3806.2023.04.001 SUN T, GUAN X N, ZHANG F, et al. Progress in simulation of type-Ⅱ superlattice infrared detectors based on the k·p method[J]. Laser Technology, 2023, 47(4): 439-453 (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2023.04.001 [10] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896 [11] SUSARLA S, KUTANA A, HACHTEL J A, et al. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap[J]. Advanced Materials, 2017, 29(35): 1702457. doi: 10.1002/adma.201702457 [12] WANG J, MA F, LIANG W, et al. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures[J]. Materials Today Physics, 2017, 2: 6-34. doi: 10.1016/j.mtphys.2017.07.001 [13] LI L, YU Y, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35 [14] WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the Synthesis of 2D MXenes[J]. Advanced Materials, 2021, 33(39): 2103148. doi: 10.1002/adma.202103148 [15] FENG W, WU J B, LI X, et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response[J]. Journal of Materials Chemistry, 2015, C3(27): 7022-7028. [16] ZHENG Z Q, YAO J D, YANG G W. Growth of centimeter-scale high-quality In2Se3 films for transparent, flexible and high performance photodetectors[J]. Journal of Materials Chemistry, 2016, C4(34): 8094-8103. [17] CHEN X, LU X, DENG B, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nature Communications, 2017, 8(1): 1672. [18] 程碑彤, 代千, 谢修敏, 等. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601-609. doi: 10.7510/jgjs.issn.1001-3806.2022.05.004 CHEN B T, DAI Q, XIE X M, et al. Research progress of single-photon detectors[J]. Laser Technology, 2022, 46(5): 601-609 (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2022.05.004 [19] SHIN G H, PARK C, LEE K J, et al. Ultrasensitive phototransistor based on WSe2-MoS2 van der Waals heterojunction[J]. Nano Letters, 2020, 20(8): 5741-5748. [20] LONG M, LIU E, WANG P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259. [21] JIN H J, PARK C, LEE K J, et al. Ultrasensitive WSe2/α-In2Se3 NIR photodetector based on ferroelectric gating effect[J]. Advanced Materials Technologies, 2021, 6(11): 2100494. [22] YAN W, SHRESHA V R, JEANGROS Q, et al. Spectrally selective mid-wave infrared detection using Fabry-Pérot cavity enhanced black phosphorus 2D photodiodes[J]. ACS Nano, 2020, 14(10): 13645-13651. [23] MAO J, YU Y, WANG L, et al. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode[J]. Advanced Science, 2016, 3(11): 1600018. [24] WANG B, WANG L, ZHANG Y, et al. Mixed-dimensional MoS2/Ge heterostructure junction field-effect transistors for logic operation and photodetection[J]. Advanced Functional Materials, 2022, 32(10): 2110181. [25] SHU K, GAO W, WAN F, et al. High-performance broadband photodetectors based on N-MoS2/P-Ge0.9Sn0.1 heterojunctions[J]. ACS Applied Electronic Materials, 2021, 3(7): 3218-3225. [26] JAIN S K, LOW M X, TAYLOR P D, et al. 2D/3D hybrid of MoS2/GaN for a high-performance broadband photodetector[J]. ACS Applied Electronic Materials, 2021, 3(5): 2407-2414. [27] JIA C, HUANG X, WU D, et al. An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-Ⅱ Zener heterojunction[J]. Nanoscale, 2020, 12(7): 4435-4444. [28] FANG C, WANG H, SHEN Z, et al. High-performance photodetectors based on lead-free 2D Ruddlesden-Popper perovskite/MoS2 heterostructures[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8419-8427. [29] KROEMER H. Heterostructure bipolar transistors and integrated circuits[J]. Proceedings of the IEEE, 1982, 70(1): 13-25. [30] MAO Y, XU P, WU Q, et al. Self-powered high-detectivity lateral MoS2 Schottky photodetectors for near-infrared operation[J]. Advanced Electronic Materials, 2021, 7(3): 2001138. [31] KROEMER H. Theory of a wide-gap emitter for transistors[J]. Proceedings of the IRE, 1957, 45(11): 1535-1537. [32] YAO J, YANG G. 2D material broadband photodetectors[J]. Nanoscale, 2020, 12(2): 454-476. [33] ANG K W, YU M B, LO G Q, et al. Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime[J]. IEEE Electron Device Letters, 2008, 29(10): 1124-1127. [34] SORIANELLO V, de ANGELIS G, de IACOVO A, et al. High responsivity SiGe heterojunction phototransistor on silicon photonics platform[J]. Optics Express, 2015, 23(22): 28163-28169. [35] FROUNCHI M, TZINTZAROV G N, ILDEFONSO A, et al. High responsivity Ge phototransistor in commercial CMOS Si-photonics platform for monolithic optoelectronic receivers[J]. IEEE Electron Device Letters, 2021, 42(2): 196-199. [36] LI H, CAI X, WANG J, et al. Ultrahigh sensitive phototransistor based on MoSe2/Ge mixed-dimensional heterojunction for visible to short-wave infrared broadband photodetection[J]. IEEE Transactions on Electron Devices, 2023, 70(12): 6446-6451. [37] DUAN X, WANG C, PAN A, et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges[J]. Chemical Society Reviews, 2015, 44(24): 8859-8876. [38] WU Z, WANG C, HUANG W, et al. Ohmic contact formation of sputtered TaN on n-type Ge with lower specific contact resistivity[J]. ECS Journal of Solid State Science and Technology, 2012, 1(1): 30-33. [39] LIN G, LIANG D, YU C, et al. Broadband 400-2400 nm Ge heterostructure nanowire photodetector fabricated by three-dimensional Ge condensation technique[J]. Optics Express, 2019, 27(22): 32801-32809. [40] HWANG A, PARK M, PARK Y, et al. Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure[J]. Science Advances, 2021, 7(51): eabj2521. [41] LEE C H, PARK Y, YOUN S, et al. Design of P-WSe2/N-Ge heterojunctions for high-speed broadband photodetectors[J]. Advanced Functional Materials, 2022, 32(4): 2107992. [42] STANGE D, WIRTHS S, VON DEN DRIESCH N, et al. Optical transitions in direct-bandgap Ge1-xSnx alloys[J]. ACS Photonics, 2015, 2(11): 1539-1545. [43] CHANG G E, BASU R, MUKHOPADHYAY B, et al. Design and modeling of GeSn-based heterojunction phototransistors for communication applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 425-433. [44] WANG W, DONG Y, LEE S Y, et al. Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range[J]. Optics Express, 2017, 25(16): 18502-18507. [45] HUNG WT, BARSHILIA D, BASU R, et al. Silicon-based high-responsivity GeSn short-wave infrared heterojunction phototransistors with a floating base[J]. Optics Letters, 2020, 45(5): 1088-1091. [46] CAI X, LI S, QIAN J, et al. High-performance N-MoSe2/P-GeSn/N-Ge van der Waals heterojunction phototransistor for short-Wave infrared photodetection[J]. Advanced Optical Materials, 2023, 12(5): 2301724. [47] LIN G, QIAN J, DING H, et al. Harvesting strong photoluminescence of physical vapor deposited GeSn with record high deposition temperature[J]. Journal of Physics, 2023, D56(35): 355104. [48] LIN G, QIAN K, DING H, et al. Effective strain relaxation of GeSn single crystal with Sn content of 16.5% on Ge grown by high-temperature sputtering[J]. Applied Surface Science, 2023, 623: 157086. [49] TRAN H, PHAM T, MARGETIS J, et al. Si-based GeSn photodetectors toward mid-infrared imaging applications[J]. ACS Photonics, 2019, 6(11): 2807-2815. [50] YANG T, DING H, CAI X, et al. Low-cost self-powered shortwave infrared photodetectors with GeSn/Ge multiple quantum wells grown by magnetron sputtering[J]. IEEE Electron Device Letters, 2023, 45(2): 156-159. [51] TRAN H, PHAM T, DU W, et al. High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging[J]. Journal of Applied Physics, 2018, 124(1): 013101. [52] ZHU S, LO G Q, YU M B, et al. Silicide Schottky-barrier phototransistor integrated in silicon channel waveguide for in-line power monitoring[J]. IEEE Photonics Technology Letters, 2009, 21(3): 185-187. [53] LI S, WU Q, DING H, et al. High gain, broadband P-WSe2/N-Ge van der Waals heterojunction phototransistor with a Schottky barrier collector[J]. Nano Research, 2023, 16(4): 5796-5802. [54] LI S, CAI X, DING H, et al. Visible to short-wave infrared broadband P-WSe2/N-Ge heterojunction phototransistor with an annular shallow-trench Schottky barrier collector[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2024, 18(1): 2300276. [55] CHEN W, LIANG R, ZHANG S, et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure[J]. Nano Research, 2020, 13(1): 127-132. [56] DHYANI V, DAS M, UDDIN W, et al. Self-powered room temperature broadband infrared photodetector based on MoSe2/germanium heterojunction with 35 A/W responsivity at 1550 nm[J]. Applied Physics Letters, 2019, 114(12): 121101.