-
0-D材料包括富勒烯[28]、纳米晶粒(nanoparticle, NP)[29]和量子点(quantum dot, QD)[30]等。其中具有宽光谱吸收特性和尺寸可调的QD是很有发展前途的光敏感材料[31],而2-D材料与QD组合而成的2D-0D HD结构有可能同时发挥QD和2-D材料各自的优势,从而提升光电器件的性能。制备技术方面,可以通过溶液法化学加工等措施较为容易地使0-D材料与2-D材料集成为一体[32],从而高效地形成2D-0D HD结构。图 2是基于2D-0D HD结构的光电探测器原理结构图。
图 2 基于2D-0D HD结构的光电探测器原理结构图
Figure 2. Schematic and structural diagrams of the 2D-0D HD structure photodetectors
与QD组合形成的2D-0D HD结构的基本工作原理是:用高吸收系数的QD作为光吸收层,当光照时QD层内产生大量的光生电子-空穴对,其中一种载流子在内建电场的作用下转移到2-D材料中,另一种载流子被捕获在QD中,两种载流子空间分离产生光生伏特效应;或者2-D材料中的光生载流子在偏置电压下以高迁移率进行2-D输运,形成横向沟道光电流,同时QD中的载流子凭借其较长的寿命进一步调制2-D沟道电导,协同产生增强的光电导效应。在此原理基础上,2012年,KONSTANTATOS等人[33]通过在graphene上沉积PbS-QD,成功地制备出具有超高比探测率(7×1013 cm·Hz1/2·W-1)的graphene/PbS-QD光电探测器件(见图 2a)。相比于单层graphene光电器件,该器件的响应度从约10-2 A/W提高到了约107 A/W,量子效率达到25%;并且改变QD的尺寸还可以调整器件的光谱响应范围。得益于PbS-QD的较强的光吸收和MoS2带隙随层数可调的特性,2015年,KUFER等人[34]报道了一种宽带MoS2/PbS-QD光电晶体管(见图 2b),该器件对可见光和近红外光均有响应,响应度最高可达到106 A/W,明显高于此前报道的单纯PbS-QD和单纯MoS2光电探测器。除了较典型的PbS-QD,2021年,KUNDU等人[35]研制的MoS2/PbSe2-QD器件在室温下对2.55 μm波长光信号的响应度和探测率分别达到137.6 A/W和7.7×1010 cm·Hz1/2·W-1。2022年,KOLLI等人[36]研制的MoS2/SnS2-QD光电探测器实现了从紫外到可见再到近红外的宽光谱响应。与MoS2同一类型的过渡金属硫系化物(transition metal dichalcogenide, TMD)2-D材料包括WSe2和WS2与QD结合构成的器件[37-39],也能产生较好的光电性能。这得益于TMD在近红外范围内表现出的较高的光吸收能力,而且表明TMD与不同QD结合构成的HD结构可以用于提升光电探测器件的性能。
相比于以上2D-0D的情况,0D-2D HD结构出现较晚,但也显示了值得重视的性能。2019年,LIU等人[40]利用Cu2O-QD/graphene HD结构,制备了柔性高灵敏光电探测器(见图 2c),该器件在室温条件下,弯曲前后分别获得了1010 A/W和106 A/W的良好响应率。HU等人[41]展示了一种用于GaN基光电探测器的InGaN-QD/graphene HD结构(见图 2d),在室温条件下,该结构显示了优于109 A/W的超高响应度和fW量级的光探测能力。KAN等人[42]将ZnS-QD/graphene HD结构与3D-4H-SiC集成,研制了一种PIN光伏型探测器,其器件对深紫外光具有极好的选择性和较快的响应速度(28 μs),远远优于传统的光导型光电探测器,但量子效率仅为1.36%。
除QD材料外,NP作为典型的0-D材料也在HD结构应用中发挥着重要作用,其研究成果包括MoS2/Ni-NP[43]、MoS2/Au-NP[44]、ReS2/Au-NP[45]等光电探测器,这类2D-0D器件利用金属颗粒表面等离激元共振(surface plasmon resonance, SPR)效应,极大地增强了局域电磁场,促进了器件光吸收。此外,金属激发的热电子传输到界面处,在一定条件下发生转移,也可形成增强的光电流。基于以上原理,这一类器件均显示了优异的探测性能。
表 1中总结了目前常见的几种2D-0D HD结构探测器的部分性能参数指标。从上面的分析和表 1可以看出,2D-0D结构光电探测器的研制取得了很大进展,主要是充分利用0-D结构的载流子陷阱效应抑制了噪声电流,获得了比单纯2-D材料探测器高得多的探测率,特别是在部分器件中获得了超高响应度(不小于106 A/W)。综合分析认为,获得超高响应度的机制可能包括:在光电导型2D-0D HD器件中,2-D材料的高载流子迁移率与0-D材料载流子陷阱效应的协同使得载流子渡越时间τtransit与寿命τlifetime相差多个数量级,2-D材料沟道中的载流子通过0-D局域栅压协同下的横向多重加速碰撞可获得很高的电导增益G(τlifetime/τtransit)[34]。同时可以看到,部分器件在响应度方面的表现比以上情形相差几个数量级,其主要原因在于:光伏型探测器的响应依赖于器件在纵方向极小尺度内的载流子空间分离,因此很难产生载流子增益,但在响应速度上有一定相对优势。目前,2D-0D HD结构光电探测器还存在一些缺陷和问题:一是响应谱主要集中在可见到近红外波段,而QD对中波红外的吸收较弱,应用也较少;二是由于初始0-D结构表面分布有缺陷,器件存在一定的稳定性问题;三是金属颗粒与2-D材料界面处形成肖特基势垒,在减小暗电流的同时也降低了热载流子的注入效率,对器件性能影响较大。更为明显的问题是这类器件整体上较低的响应速度(毫秒量级),其主要原因是光生载流子限制在0-D深势阱中时有较长的滞留时间。以上问题需要在今后进一步研究中加以解决。
表 1 常见的2D-0D HD结构光电探测器的部分性能参数指标
Table 1. Some performance parameters of a few studied 2D-0D HD structure photodetectors
年份 结构 响应范围/μm 响应度/(A·W-1) 探测率/(cm·Hz1/2·W-1) 响应速度(上升)/s 参考文献 2018 graphene/PbS-QD 0.6~1.55 104(@1.55 μm) 1012 3×10-3 [46] 2018 MoS2/PbS-QD 0.7~0.9 5.4×104(@0.85 μm) 1011 9.5×10-4 [47] 2019 WS2/PbS-QD 0.8~2.2 1400(@1.8 μm) 1012 0.2 [39] 2019 BP/InP-QD — 1×109(@0.405 μm) 1016 — [48] 2019 MoS2/ZnCdSe/ZnS (core/shell)-QD 0.45~0.7 3.7×104(@0.45 μm) 1012 0.3 [49] 2019 Cu2O-QD/graphene — 1.2×1010(@0.45 μm) 1.4×1012 — [40] 2019 InGaN-QD/graphene 0.45~0.65 1.6×109(@0.45 μm) 5.8×1014 — [41] 2019 ZnS-QD/graphene 0.2~0.28 0.29(@0.25 μm) 1.41×1010 2.8×10-5 [42] 2021 MoS2/PbSe-QD 1.2~3 137.6(@2.55 μm) 7.7×1010 — [35] 2021 MoS2/Au-NP 0.4~0.8 1.5(@0.64 μm) 4.75×1013 6.5×10-3 [44] 2022 MoS2/SnS2-QD 0.3~3 435(@visible) 7.1×1012 0.1 [36] 2022 ReS2/Au-NP 0.554~0.78 2.1(@0.554 μm) 1.12×1012 0.2 [45] 2023 MoS2/Ni-NP 0.532~0.98 106.21(@0.532 μm) 1.9×1012 5.3×10-2 [43] -
图 3是基于2D-1D HD结构的光电探测器原理结构图。与0-D材料相似,1-D材料由于具有较高的表面体积比、量子约束效应和优越的载流子输运特性[54-56]等优点,被认为是很有发展潜力的高性能光电器件的候选材料。在结构制备方面,1-D材料可以很容易地与2-D材料集成在一起,并形成紧密接触,得到更高质量的VDW异质结。在器件性能方面,将1-D材料和2-D材料合成2D-1D HD结构,可以改善基于2-D材料光电探测器的光吸收低等问题。此外,与0-D材料相比,1-D材料具有如纳米管[57](nanotube, NT)、纳米线[58](nanowire, NW)、纳米带[59](nanobelt, NB)和纳米棒[60](nanorod, NR)等更丰富的形态,为构建HD结构光电探测器提供了更充分的选择。
图 3 基于2D-1D HD结构的光电探测器原理结构图
Figure 3. Schematic and structural diagrams of the 2D-1D HD structure photodetectors
此类研究中,基于2-D/1-D HD结构的光电探测器展现出了优异的性能。2013年,JARIWALA等人[50]利用单壁碳纳米管(single-walled carbon nanotube, SWCNT)和单层的MoS2形成的二极管结构的载流子高速输运特性,制备了可实现15 μs以下快速光响应的MoS2/SWCNT HD结构的高灵敏度光电探测器(见图 3a)。2018年,QIN等人[61]观察到硒(selenium, Se)纳米片(nanoplate, NPL)的(110)面与ReS2(010)面之间的独特关系,成功地在单层ReS2上实现了1-D原子链Se-NPL的外延生长,测试显示,该器件获得了8×1012 cm·Hz1/2·W-1的高探测率,比单纯2-D材料ReS2器件提高了近3个数量级。同样是与ReS2材料结合,2021年,TAO等人[51]制备了具有Ⅱ型异质能带结构的ReS2/Te-NW HD光电探测器(见图 3b),获得了180 A/W的响应度和5 ms的光响应时间,整体性能优于之前报道的基于单一ReS2材料的光电探测器。此外,2-D/1-D HD结构在紫外光区域也表现出良好的性能,比较有代表性的是:2015年,DANG等人[62]通过在graphene上沉积ZnO-NR构建的一种混合型紫外光电探测器,由于NR表面态可容纳大量的载流子以及可能的级联倍增效应,该器件在近紫外区显示出3×105 A/W的高响应度。
关于1D-2D HD结构的研究也获得了很大的进展。例如,HUO等人[63]最近展示了CuO-NW/MoS2 HD结构光电探测器,该器件在反偏时,表现出2500 A/W的高响应度,高于同类2-D MoS2器件近10倍;正偏时,器件的上升时间小于2.5 ms,衰减时间3.2 ms,探测率高达6.5×1011 cm·Hz1/2·W-1,具有良好的高频工作和弱光探测的潜力。此外,1D-2D HD结构还可用于设计无需任何外部能量即可工作的自驱动型光电探测器。在不依赖电子束光刻等复杂生产技术的情况下,2020年,SHANG等人[52]展示了一种基于Se-NT/InSe异质结的自驱动型光电探测器(见图 3c),它在没有外部电源的条件下,得到了110 mA/W的响应度,量子效率可达8.7%。除常见TMD材料外,WU等人[53]利用Si NW阵列(Si nanowire arrays, SiNWA)设计了一款SiNWA/PdSe2 HD结构的自驱动型光电探测器(见图 3d),在0.2 μm~4.6 μm宽光谱吸收范围内,其最高比探测率为3.19×1014 cm · Hz1/2·W-1。
类似2D-1D HD结构还有CdS-NW/WSe2[64]、Te-NW/MoTe2[65]、graphene/SWCNT[66]和WS2/Sb2Se3-NW[67]等。表 2中总结了近5年来基于2D-1D HD异质结构的光电探测器的部分性能参数指标。可以看到,在室温条件下,这些器件表现出比单一2-D材料光探测器更优良的性能。此类器件性能改善的共性机制:一是1-D结构的载流子限制效应抑制了器件的常规电流噪声,提高了灵敏度和探测率;二是两种光生载流子分离后进行双通道输运,避免了相互散射,增强了光电导。以上成果证明了2D-1D集成的优异性、多样性和新颖性,预示了良好的应用前景。然而,无论是2D-1D还是1D-2D类型,大多器件的光探测能力被限制在了可见光和近红外范围,需要进一步向其它谱段扩展。在纳米级的此类异质结中,由于材料晶体结构的不完美性,2D-1D界面存在一定程度的结构无序,从而较大程度地影响到载流子输运特性。此外,界面处形成结的有效面积小、存在杂质表面态、1-D纳米结构大规模均匀性难以精确控制等问题,都成为下一步优化2D-1D HD光电探测器所必须面对的课题。
表 2 常见的2D-1D HD结构光电探测器的部分性能参数指标
Table 2. Some performance parameters of a few studied 2D-1D HD structure photodetectors
年份 结构 响应范围/μm 响应度/(A·W-1) 探测率/(cm·Hz1/2·W-1) 响应时间(上升)/s 参考文献 2019 WS2/Sb2Se3-NW — 1.51(@0.52 μm) 1.16×1010 8×10-3 [67] 2019 WS2/CdS-NW — 5472(@0.45 μm) 5.3×1013 2×10-2 [68] 2020 graphene/SWCNT 0.36~0.94 204.5(@0.365 μm) — 0.042 [66] 2020 Se-NB/InSe 0.3~0.7 3.2×10-2(@0.46 μm) 1.7×1011 3×10-2 [52] 2020 SiNWA/ PdSe2 0.2~4.6 0.726(@0.98 μm) 3.19×1014 3.4×10-6 [53] 2021 Te-NW/ MoTe2 0.52~1.31 3×104(@0.52 μm) 4.9×1011 4.8×10-3 [65] 2022 CH3NH3PbI3-NW/graphene — 558(@0.655 μm) 2.3×1012 1.9×10-2 [69] 2023 CuO-NW/MoS2 0.4~0.8 2500(@0.525 μm) 6.5×1011 2.5×10-3 [63] -
2-D材料与商业化的3-D半导体衬底(如Si[70]、SiC[71]、GaAs等Ⅲ-Ⅴ型半导体[72])结合构成的2D-3D HD结构,为制造高性能红外光电探测器提供了更多种可供选择的方法。2D-3D HD结构是将2-D和3-D材料各自的优势选择性地结合在一起,以实现光吸收增强、电荷转移加快、制造工艺简化[73-74]等目的。图 4是基于2D-3D HD结构的光电探测器原理结构图。
图 4 基于2D-3D HD结构的光电探测器原理结构图
Figure 4. Schematic and structural diagrams of the 2D-3D HD structure devices
目前大多数的2D-3D HD光电探测器都是基于2-D材料与3D-Si的集成。2013年,WANG等人[75]将graphene转移至具有硅光波导的绝缘体硅片上,制备了如图 4a所示的3D-Si/graphene HD结构光电二极管,并且利用聚焦型亚波长金属光栅的多谱特性在室温下实现了对可见光到中红外的宽光谱响应。这种硅波导和2-D材料集成的光电探测器件,还具有高响应度以及与互补金属氧化物半导体(complementary metal-oxide-semiconductor, CMOS)工艺兼容等特性,是graphene器件实现功能优化的重要方式。为了进一步拓宽光谱响应范围和提高响应性能,研究人员也进行了其它大量的尝试。例如,2016年,MAO等人[76]制备了3D-Si/MoSe2 HD结构光电探测器,实现了从紫外到可见再到红外波段的光响应,同时,用graphene作为上下电极使光生载流子在结区快速分离和输运,从而将响应速度提高到270 ns的极快水平;2020年,LU等人[77]首次通过脉冲激光沉积(pulsed laser deposition, PLD)方法制备了3D-Si/MoTe2 HD结构光电二极管(见图 4b),较少的界面缺陷与超薄的膜厚使得此光电二极管具有了0.3 μm~1.8 μm的宽响应谱、约150 ns的极快响应速度、24%的量子效率和6.8×1013 cm·Hz1/2·W-1的高比探测率;2021年,WU等人[78]通过标准湿转移工艺成功制备了金字塔型Si/WS2 HD结构,由于HD结构质量较高,其器件的比探测率达到2.6×1014 cm·Hz1/2·W-1,光响应谱涵盖了可见到中红外波段的宽阔范围。
2-D材料与Si以外的其它3-D半导体材料的集成方面也出现了一些代表性成果。例如,2020年,LI等人[79]制备了3D-GaN/graphene HD结构的高灵敏紫外光电探测器(见图 4c),其最大比探测率达到1×1017 cm·Hz1/2·W-1;2019年,JIA等人[81]利用3D-GaAs/MoS2 HD结构制备的光电探测器实现了深紫外到近红外波段的稳定宽光谱响应;2019年,WU等人[82]就研制出一种基于3D-Ge/PdSe2 HD异质结构的偏振敏感光电探测器,其光响应时间短至6.4 μs,探测偏振度高达112.2,超过了基于所有单纯2-D材料的偏振敏感器件。此外,得益于Ge的加入,该器件的有效探测波长扩展到了深紫外到中红外波段的超宽范围。作为2-D材料与3D-Ge材料集成的最新成果,2023年,ZHANG等人[80]利用3D-Ge/MoS2 HD结构研制了双波段光电探测器(见图 4d),可见光响应度为24.9 A/W,红外响应度为0.4 A/W。
表 3中总结了近5年报道的2D-3D HD结构光电探测器的部分性能参数指标。这些探测器性能改善的物理机制包括:2-D材料提供无缺陷界面、载流子高效收集通道、可调控能带结构和新颖光学特性等;3-D材料提供高速输运性能、高效光吸收和结构稳定性等,二者优势互补强化了整体探测性能。综合以上信息可以看出,2D-3D HD结构光电探测器在光吸收范围和响应度等性能上的确表现出了强于单纯2-D材料探测器的优势。然而,3-D材料的参与同时也增大了器件体积、加大了大规模集成的难度、降低了柔性器件应用的可行性,这些问题将是下一步重点研究的课题。
表 3 常见的2D-3D HD结构光电探测器的部分性能参数指标
Table 3. Some performance parameters of a few studied 2D-3D HD structure photodetectors
年份 结构 响应范围/μm 响应度/(A·W-1) 探测率/(cm·Hz1/2·W-1) 响应时间(上升)/s 参考文献 2018 3D-Si/PtSe2 0.2~1.55 0.52(@0.808 μm) 3.26×1013 1.3×10-5 [70] 2018 3D-Si/SnS 0.37~1.06 273(@0.808 μm) 7×1013 2.5×10-2 [74] 2019 3D-GaAs/MoS2 0.2~1.2 3.52×10-2(@0.78 μm) 1.96×1013 3.4×10-6 [81] 2019 3D-Ge/PdSe2 0.2~3.04 0.691(@0.98 μm) 1.73×1013 6.4×10-6 [82] 2020 3D-Si/MoTe2 0.3~1.8 0.19(@0.98 μm) 6.8×1013 1.5×10-7 [77] 2020 3D-GaN/graphene 0.4~0.42 — 1×1017 3.5×10-4 [79] 2021 3D-Si/WS2 0.2~3.0 0.29(@0.98 μm) 2.6×1014 5.2×10-6 [78] 2022 3D-Si/GaSe — 2.8×103(@0.58 μm) 6.2×1012 — [83] 2023 3D-Ge/MoS2 — 24.9(@0.532 μm),-0.4(@1.55 μm) 7.9×1011,-1.3×1010 — [80] -
前面讨论了研究较为普遍的两层HD结构的光电探测器,而近年来人们受首例具有三明治夹层结构的VDW光电探测器[84]的设计理念的影响,还提出了采用多层堆叠策略构建HD结构的方法。在实验研究方面,研究人员将HD结构与传统异质结构进行集成,成功制备了基于新型双结结构的多层HD光电探测器。图 5是基于多层HD结构的光电探测器原理以及能带图。
图 5 基于多层HD结构的光电探测器原理以及能带图
Figure 5. Schematic and energy band diagrams of the multi-HD structure photodetectors
2015年,KIM等人[85]制备了一种graphene/ZnS-NB/graphene的2-D/1-D/2D HD结构紫外光电探测器,得益于该结构中graphene和ZnS-NB之间有效结区的增加,器件获得了高于当时已经报道的ZnS-NB光电探测器106倍的光电流。2017年,NIAN等人[86]利用激光冲击压印制备了一种graphene/PbS-QD/graphene的2-D/0-D/2D HD结构(见图 5a),经过激光冲击,graphene与PbS-QD紧密接触在一起,改善了两种材料之间的传输效率,相较于已报道的同类型graphene探测器,该器件将光响应时间缩短了20倍。2022年,LI等人[87]设计了被双层Au纳米颗粒修饰的MoS2光电探测器,如图 5b所示的Au-NP/MoS2/Au-NP HD结构,得到了最高1757 A/W的响应度和3.44×1010 cm·Hz1/2·W-1的探测率,同时量子效率达到了4106%。
另一种多层HD结构是与普通异质结构一起构建的双结结构。2018年,WANG等人[88]为了解决少层MoS2和WS2异质结间接带隙引起的低光吸收,在MoS2/WS2异质结构的基础上,将周期性Au NPs与异质结构相结合,构建了2D/2-D/0-D的新型双结结构,同样是利用了SPR效应,相较于无HD结构时,器件在1030 nm的光响应度提高了25倍。类似的增强光响应的例子还有ZENG等人的工作[89],该项研究展示了一种基于MoS2/WSe2/PbS-QD双结结构的光电探测器,其2D/2-D/0-D结构的能带分布情况如图 5c所示,测试结果显示,该器件在增加了光响应度的同时,克服了2-D/0-D HD结构中出现的响应时间较长的问题,在室温下获得了43 μs/48 μs的快速上升/衰减时间,量子效率最大可接近100%。
除了以上于0-D、1-D材料的多层集成方案,MAITY等人[90]最近展示了一种3-D/2-D/2-D形式的多层HD设计,制备了3D-GaN/MoSe2/MoS2异质结构光电探测器(见图 5d),相较于单异质结,这种保持了阶梯状能带排列的双异质结器件,在365 nm的光照下光吸收提高了约100倍,获得了27.88%的量子效率和更高的探测率(1.79×1014 cm·Hz1/2·W-1)。表 4中总结了以上提到的多层HD结构光电探测器的部分性能参数指标。结合以上分析可以看到,基于多层复杂HD结构的光电探测器,表现出超越传统异质结构探测器件的光电特性,为实现性能全面增强的新型高品质光电探测器件提供了更多的可行性方案。然而,针对此类器件的理论和实验研究还不充分,不明确的潜在探测机制还将影响有效方案的形成,因此如何设计更高效的多层HD结构,仍然是一个挑战。
表 4 多层HD结构光电探测器的部分性能参数指标
Table 4. Some performance parameters of multi-HD structure photodetectors
年份 结构 响应范围/μm 响应度/(A·W-1) 探测率/(cm·Hz1/2·W-1) 响应时间(上升)/s 参考文献 2018 MoS2/WS2/Au-NP 0.532~1.03 5.5(@0.532 μm) 1.4×1010 — [88] 2021 3D-Ge/graphene/C3N-QD/graphene — 2.98×107(@1.55 μm) 1.04×1013 5.7×10-5 [26] 2022 Au-NP/MoS2/Au-NP — 1757(@0.532 μm) 3.44×1010 <0.024 [87] 2022 WSe2/MoS2/PbS-QD 0.40~1.06 0.8(@0.785 μm) 5.15×1011 5×10-5 [89] 2023 3D-GaN/MoSe2/MoS2 0.25~0.63 82(@0.365 μm) 1.79×1014 — [90]
基于2维材料的异维结构光电探测器的研究进展
Research progress on 2-D material based on hetero-dimension photodetectors
-
摘要: 基于2维材料的光电探测器是新一代探测技术的重要发展方向。2维材料因不受晶格匹配的限制,可以利用范德华力与其它维度的材料,如0维的量子点、1维的纳米线、3维的半导体衬底等,形成异维结构的光电探测器。迄今为止,基于2维材料的异维结构光电探测器研究已经取得了很大的进展,实现了显著优于单纯2维材料探测器的性能。归纳了异维结构范德华异质结在光电探测中的优势;指出了2维材料与0维材料、1维材料、3维材料或多层多维度材料组成的异维结构光电探测器的研究现状;并在此基础上,对其面临的挑战和前景进行了总结与展望。Abstract: Photodetecting based on two-dimensional (2-D) material is an important trend for new generation of photodetection technology. Free of lattice matching, 2-D materials can be easily combined via van der Waals (VDW) force to materials of other dimensions, such as zero-dimensional (0-D) quantum dots, one-dimensional (1-D) nanowires and three-dimensional (3-D) semiconductors, to form hetero-dimension (HD) photodetectors. So far, significant progresses have been made for 2-D material based HD photodetectors to exhibit obviously higher performance than 2-D material photodetectors. The merits of VDW HD junctions in photodetection are introduced in this paper, and the photodetector research achievements of the HD styles including 2D-0D, 2D-1D, 2D-3D, and multi-layer multi-dimension are reviewed. Some insight into the possible challenges and future prospects of 2-D materials based HD-structure photodetectors is attempted.
-
Key words:
- detectors /
- 2-D materials /
- van der Waals heterostructures /
- hetero-dimension structure
-
图 2 基于2D-0D HD结构的光电探测器原理结构图
a—graphene/PbS-QD光电晶体管结构图[33] b—MoS2/PbS-QD光电晶体管HD结构图[34] c—Cu2 O-QD/graphene光电探测器的原理图[40] d—InGaN-QD/graphene光电探测器结构图[41]
Figure 2. Schematic and structural diagrams of the 2D-0D HD structure photodetectors
a—structural diagram of the graphene/PbS-QD photodetector[33] b—schematic diagram of the phototransistor based on MoS2/PbS-QD HD structure[34] c—schematic diagram of the photodetector based on graphene/Cu2 O-QD HD structure[40] d—structural diagram of the InGaN-QD/graphene photodetector[41]
图 3 基于2D-1D HD结构的光电探测器原理结构图
a—MoS2/SWCNT/光电二极管结构图[50] b—ReS2/Te-NW光电晶体管结构图[51] c—Se-NT/InSe HD结构光电探测器的原理示意图[52] d—SiNWA/PdSe2光电探测器结构原理图[53]
Figure 3. Schematic and structural diagrams of the 2D-1D HD structure photodetectors
a—structural diagram of the SWCNT/MoS2 photodetector[50] b—schematic diagram of the phototransistor based on ReS2/Te-NW HD structure[51] c—schematic diagram of the photodetector based on Se-NT/InSe HD structure[52] d—schematic diagram of the SiNWA/PdSe2 photodetector[53]
图 4 基于2D-3D HD结构的光电探测器原理结构图
a—3D-Si/graphene光电探测器结构示意图[75] b—3D-Si/MoTe2 HD结构光电探测器的结构示意图[77] c—3D-GaN/graphene光电探测器的原理图[79] d—3D-Ge/MoS2 HD结构器件的原理图[80]
Figure 4. Schematic and structural diagrams of the 2D-3D HD structure devices
a—schematic diagram of the 3D-Si/graphene photodetector[75] b—schematic diagram of the 3D-Si/MoTe2 HD photodetector[77] c—schematic diagram of the 3D-GaN/graphene photodetector[79] d—schematic diagram of the 3D-Ge/MoS2 HD structure device[80]
图 5 基于多层HD结构的光电探测器原理以及能带图
a—graphene/PbS-QD/graphene结构的原理图[85] b—Au-NP/MoS2/Au-NP杂化结构示意图[87] c—光照下,WSe2/MoS2/PbS-QD异质结构的能带和载流子输运示意图[89] d—3D-GaN/MoSe2/MoS2异质结构的能带图[90]
Figure 5. Schematic and energy band diagrams of the multi-HD structure photodetectors
a—schematic diagram of the graphene/PbS-QD/graphene hybrid structures[85] b—schematic diagram of the Au-NP/MoS2/Au-NP hybrid structures[87] c—energy band diagram and current transport of the WSe2/MoS2/PbS-QD heterojunction upon illumination[89] d—schematic diagram of the energy band diagram for 3D-GaN/MoSe2/MoS2 heterostructures[90]
表 1 常见的2D-0D HD结构光电探测器的部分性能参数指标
Table 1. Some performance parameters of a few studied 2D-0D HD structure photodetectors
年份 结构 响应范围/μm 响应度/(A·W-1) 探测率/(cm·Hz1/2·W-1) 响应速度(上升)/s 参考文献 2018 graphene/PbS-QD 0.6~1.55 104(@1.55 μm) 1012 3×10-3 [46] 2018 MoS2/PbS-QD 0.7~0.9 5.4×104(@0.85 μm) 1011 9.5×10-4 [47] 2019 WS2/PbS-QD 0.8~2.2 1400(@1.8 μm) 1012 0.2 [39] 2019 BP/InP-QD — 1×109(@0.405 μm) 1016 — [48] 2019 MoS2/ZnCdSe/ZnS (core/shell)-QD 0.45~0.7 3.7×104(@0.45 μm) 1012 0.3 [49] 2019 Cu2O-QD/graphene — 1.2×1010(@0.45 μm) 1.4×1012 — [40] 2019 InGaN-QD/graphene 0.45~0.65 1.6×109(@0.45 μm) 5.8×1014 — [41] 2019 ZnS-QD/graphene 0.2~0.28 0.29(@0.25 μm) 1.41×1010 2.8×10-5 [42] 2021 MoS2/PbSe-QD 1.2~3 137.6(@2.55 μm) 7.7×1010 — [35] 2021 MoS2/Au-NP 0.4~0.8 1.5(@0.64 μm) 4.75×1013 6.5×10-3 [44] 2022 MoS2/SnS2-QD 0.3~3 435(@visible) 7.1×1012 0.1 [36] 2022 ReS2/Au-NP 0.554~0.78 2.1(@0.554 μm) 1.12×1012 0.2 [45] 2023 MoS2/Ni-NP 0.532~0.98 106.21(@0.532 μm) 1.9×1012 5.3×10-2 [43] 表 2 常见的2D-1D HD结构光电探测器的部分性能参数指标
Table 2. Some performance parameters of a few studied 2D-1D HD structure photodetectors
年份 结构 响应范围/μm 响应度/(A·W-1) 探测率/(cm·Hz1/2·W-1) 响应时间(上升)/s 参考文献 2019 WS2/Sb2Se3-NW — 1.51(@0.52 μm) 1.16×1010 8×10-3 [67] 2019 WS2/CdS-NW — 5472(@0.45 μm) 5.3×1013 2×10-2 [68] 2020 graphene/SWCNT 0.36~0.94 204.5(@0.365 μm) — 0.042 [66] 2020 Se-NB/InSe 0.3~0.7 3.2×10-2(@0.46 μm) 1.7×1011 3×10-2 [52] 2020 SiNWA/ PdSe2 0.2~4.6 0.726(@0.98 μm) 3.19×1014 3.4×10-6 [53] 2021 Te-NW/ MoTe2 0.52~1.31 3×104(@0.52 μm) 4.9×1011 4.8×10-3 [65] 2022 CH3NH3PbI3-NW/graphene — 558(@0.655 μm) 2.3×1012 1.9×10-2 [69] 2023 CuO-NW/MoS2 0.4~0.8 2500(@0.525 μm) 6.5×1011 2.5×10-3 [63] 表 3 常见的2D-3D HD结构光电探测器的部分性能参数指标
Table 3. Some performance parameters of a few studied 2D-3D HD structure photodetectors
年份 结构 响应范围/μm 响应度/(A·W-1) 探测率/(cm·Hz1/2·W-1) 响应时间(上升)/s 参考文献 2018 3D-Si/PtSe2 0.2~1.55 0.52(@0.808 μm) 3.26×1013 1.3×10-5 [70] 2018 3D-Si/SnS 0.37~1.06 273(@0.808 μm) 7×1013 2.5×10-2 [74] 2019 3D-GaAs/MoS2 0.2~1.2 3.52×10-2(@0.78 μm) 1.96×1013 3.4×10-6 [81] 2019 3D-Ge/PdSe2 0.2~3.04 0.691(@0.98 μm) 1.73×1013 6.4×10-6 [82] 2020 3D-Si/MoTe2 0.3~1.8 0.19(@0.98 μm) 6.8×1013 1.5×10-7 [77] 2020 3D-GaN/graphene 0.4~0.42 — 1×1017 3.5×10-4 [79] 2021 3D-Si/WS2 0.2~3.0 0.29(@0.98 μm) 2.6×1014 5.2×10-6 [78] 2022 3D-Si/GaSe — 2.8×103(@0.58 μm) 6.2×1012 — [83] 2023 3D-Ge/MoS2 — 24.9(@0.532 μm),-0.4(@1.55 μm) 7.9×1011,-1.3×1010 — [80] 表 4 多层HD结构光电探测器的部分性能参数指标
Table 4. Some performance parameters of multi-HD structure photodetectors
年份 结构 响应范围/μm 响应度/(A·W-1) 探测率/(cm·Hz1/2·W-1) 响应时间(上升)/s 参考文献 2018 MoS2/WS2/Au-NP 0.532~1.03 5.5(@0.532 μm) 1.4×1010 — [88] 2021 3D-Ge/graphene/C3N-QD/graphene — 2.98×107(@1.55 μm) 1.04×1013 5.7×10-5 [26] 2022 Au-NP/MoS2/Au-NP — 1757(@0.532 μm) 3.44×1010 <0.024 [87] 2022 WSe2/MoS2/PbS-QD 0.40~1.06 0.8(@0.785 μm) 5.15×1011 5×10-5 [89] 2023 3D-GaN/MoSe2/MoS2 0.25~0.63 82(@0.365 μm) 1.79×1014 — [90] -
[1] KAHN J M, BARRY R. Wireless infrared communications[J]. Proceedings of the IEEE, 1997, 85(2): 265-298. doi: 10.1109/5.554222 [2] KÄLLHAMMER J. Imaging: The road ahead for car night-vision[J]. Nature Photonics, 2006, 5(10): 12-13. [3] HAN J, WANG J. Photodetectors based on two-dimensional materials and organic thin-film heterojunctions[J]. Chinese Physics, 2019, B28(1): 17103. [4] 罗加尔斯基A. 红外与太赫兹探测器[M]. 第3版. 北京: 科学出版社, 2023: 19-21. ROGALSKI A. Infrared and terahertz detectors[M]. 3rd ed. Beijing: Science Press, 2023: 19-21(in Chinese). [5] 程碑彤, 代千, 谢修敏, 等. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601-609. doi: 10.7510/jgjs.issn.1001-3806.2022.05.004 CHENG B T, DAI Q, XIE X M, et al. Research progress of single-photon detectors[J]. Laser Technology, 2022, 46(5): 601-609(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2022.05.004 [6] CASALINO M, COPPOLA G, IODICE M, et al. Near-infrared sub-bandgap all-Silicon photodetectors: State of the art and perspectives[J]. Sensors, 2010, 10(12): 10571-10600. doi: 10.3390/s101210571 [7] POP E. Energy dissipation and transport in nanoscale devices[J]. Nano Research, 2010, 3(3): 147-169. doi: 10.1007/s12274-010-1019-z [8] JIN X, LIU X, LEE J, et al. Modeling of subthreshold characteristics of short channel junctionless cylindrical surrounding-gate nanowire metal-oxide-silicon field effect transistors[J]. Physica Scripta, 2014, 89(1): 15804. doi: 10.1088/0031-8949/89/01/015804 [9] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896 [10] LIU C, CHEN H, WANG S, et al. Two-dimensional materials for next-generation computing technologies[J]. Nature Nanotechnology, 2020, 15(7): 545-557. doi: 10.1038/s41565-020-0724-3 [11] HUO N, KONSTANTATOS G. Recent progress and future prospects of 2D-based photodetectors[J]. Advanced Materials, 2018, 30(51): 1801164. doi: 10.1002/adma.201801164 [12] LONG M, LIU E, WANG P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259. doi: 10.1021/acs.nanolett.5b04538 [13] DAS S, ROBINSON J A, DUBEY M, et al. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids[J]. Annual Review of Materials Research, 2015, 45(1): 1-27. doi: 10.1146/annurev-matsci-070214-021034 [14] AN J, WANG B, SHU C, et al. Research development of 2D materials based photodetectors towards mid-infrared regime[J]. Nano Select, 2021, 2(3): 527-540. doi: 10.1002/nano.202000237 [15] ZHANG X, LI J, MA Z, et al. Design and integration of a layered MoS2/GaN van der Waals heterostructure for wide spectral detection and enhanced photoresponse[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47721-47728. [16] NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): 461-472. [17] LIU Y, WEISS N O, DUAN X, et al. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1(9): 16042. doi: 10.1038/natrevmats.2016.42 [18] WANG P, JIA C, HUANG Y, et al. Van der Waals heterostructures by design: From 1D and 2D to 3D[J]. Matter, 2021, 4(2): 552-581. doi: 10.1016/j.matt.2020.12.015 [19] JARIWALA D, MARKS T J, HERSAM M C. Mixed-dimensional van der Waals heterostructures[J]. Nature Materials, 2017, 16(2): 170-181. doi: 10.1038/nmat4703 [20] NUTTING D, FELIX J F, TILLOTSON E, et al. Heterostructures formed through abraded van der Waals materials[J]. Nature Communication, 2020, 11(1): 1-10. doi: 10.1038/s41467-019-13993-7 [21] WANG J, FANG H, WANG X, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared[J]. Nano Micro Small, 2017, 13(35): 1700894. [22] KAGAN C R, LIFSHITZ E, SARGENT E H, et al. Building devices from colloidal quantum dots[J]. Science, 2016, 353(6302): 885-894. [23] CHEN H, LIU H, ZHANG Z, et al. Nanostructured photodetectors: From ultraviolet to Terahertz[J]. Advanced Materials, 2016, 28(3): 403-433. doi: 10.1002/adma.201503534 [24] DHYANI V, DAS S. High-speed scalable silicon-MoS2 P-N heterojunction photodetectors[J]. Scientific Reports, 2017, 7(1): 1-9. doi: 10.1038/s41598-016-0028-x [25] FENG X, HE Z, LIU Z, et al. Intact vertical 3D-0D-2D carbon-based P-N junctions for use in high-performance photodetectors[J]. Advanced Optical Materials, 2021, 9(16): 2100387. doi: 10.1002/adom.202100387 [26] ZHANG S, GUAN L, NIU X, et al. Design and build MoS2/Au/MoS2 sandwich structure to significantly enhance the photoluminescence[J]. AIP Advances, 2019, 9(9): 095305. doi: 10.1063/1.5115235 [27] 李亮, 皮乐晶, 李会巧, 等. 二维半导体光电探测器: 发展、机遇和挑战[J]. 科学通报, 2017, 62(27): 3134-3153. LI l, PI L J, LI H Q, et al. Photodetectors based on two-dimensional semiconductors: Progress, opportunity and challenge[J]. Chinese Science Bulletin, 2017, 62(27): 3134-3153(in Chinese). [28] KHAN I, SAEED K, KHAN I. Nanoparticles: Properties, applications and toxicities[J]. Arabian Journal of Chemistry, 2019, 12(7): 908-931. doi: 10.1016/j.arabjc.2017.05.011 [29] YU W J, LI Z, ZHOU H, et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters[J]. Nature Materials, 2013, 12(3): 246-252. doi: 10.1038/nmat3518 [30] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937. doi: 10.1126/science.271.5251.933 [31] BERA D, QIAN L, TSENG T, et al. Quantum dots and their multimodal applications: A review[J]. Materials, 2010, 3(4): 2260-2345. [32] ZHOU W, SHANG Y, GARCÍA de ARQUER F P, et al. Solution-processed upconversion photodetectors based on quantum dots[J]. Nature Electronics, 2020, 3(5): 251-258. [33] KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. [34] KUFER D, NIKITSKIY I, LASANTA T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Advanced Materials, 2015, 27(1): 176-180. [35] KUNDU B, ÖZDEMIR O, DALMASES M, et al. Hybrid 2D-QD MoS2-PbSe quantum dot broadband photodetectors with high-sensitivity and room-temperature operation at 2.5 μm[J]. Advanced Optical Materials, 2021, 9(22): 2101378. [36] KOLLI C S R, SELAMNENI V, MUNIZ MARTINEZ B A, et al. Broadband, ultra-high-responsive monolayer MoS2/SnS2 quantum-dot-based mixed-dimensional photodetector[J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15415-15425. [37] YU Y, ZHANG Y, ZHANG H, et al. PbS-decorated WS2 phototransistors with fast response[J]. ACS Photonics, 2017, 4(4): 950-956. [38] HU C, DONG D, YANG X, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors[J]. Advanced Functional Materials, 2017, 27(2): 1603605. [39] ÖZDEMIR O, RAMIRO I, GUPTA S, et al. High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 μm[J]. ACS Photonics, 2019, 6(10): 2381-2386. [40] LIU Q, TIAN H, LI J, et al. Hybrid Graphene/Cu2O quantum dot photodetectors with ultrahigh responsivity[J]. Advanced Optical Materials, 2019, 7(20): 1900455. [41] HU A, TIAN H, LIU Q, et al. Graphene on self-assembled InGaN quantum dots enabling ultrahighly sensitive photodetectors[J]. Advanced Optical Materials, 2019, 7(8): 1801792. [42] KAN H, ZHENG W, LIN R, et al. Ultrafast photovoltaic-type deep ultraviolet photodetectors using hybrid zero-/two-dimensional heterojunctions[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8412-8418. [43] DUAN R, QI W, LI P, et al. A high-performance MoS2-based visible-near-infrared photodetector from gateless photogating effect induced by nickel nanoparticles[J]. Research, 2023, 6: 0195. [44] MUKHERJEE S, CHOWDHURY R K, KARMAKAR D, et al. Plasmon triggered, enhanced light-matter interactions in Au-MoS2 coupled system with superior photosensitivity[J]. Journal of Physical Chemistry, 2021, C125(20): 11023-11034. [45] SELAMNENI V, MUKHERJEE A, RAGHAVAN H, et al. Plasmonic Au nanoparticles coated on ReS2 nanosheets for visible-near-infrared photodetectors[J]. ACS Applied Nano Materials, 2022, 5(8): 11381-11390. [46] ZHENG L, ZHOU W, NING Z, et al. Ambipolar graphene-quantum dot phototransistors with CMOS compatibility[J]. Advanced Optical Materials, 2018, 6(23): 1800985. [47] PAK S, CHO Y, HONG J, et al. Consecutive junction-induced efficient charge separation mechanisms for high-performance MoS2/quantum dot phototransistors[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38264-38271. [48] KWAK D, RAMASAMY P, LEE Y, et al. High-performance hybrid InP QDs/black phosphorus photodetector[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 29041-29046. [49] ZHANG S, WANG X, CHEN Y, et al. Ultrasensitive hybrid MoS2-ZnCdSe quantum dot photodetectors with high gain[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23667-23672. [50] JARIWALA D, SANGWAN V K, WU C, et al. Gate-tunable carbon nanotube-MoS2 heterojunction P-N diode[J]. Proceedings of the National Academy of Sciences, 2013, 110(45): 18076-18080. [51] TAO J, JIANG J, ZHAO S, et al. Fabrication of 1D Te/2D ReS2 mixed-dimensional van der Waals P-N heterojunction for high-performance phototransistor[J]. ACS Nano, 2021, 15(2): 3241-3250. [52] SHANG H, CHEN H, DAI M, et al. A mixed-dimensional 1D Se-2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors[J]. Nanoscale Horizons, 2020, 5(3): 564-572. [53] WU D, JIA C, SHI F, et al. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing[J]. Journal of Materials Chemistry, 2020, A8(7): 3632-3642. [54] LEE T I, LEE S, LEE E, et al. High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly[J]. Advanced Materials, 2013, 25(21): 2920-2925. [55] DU Y, QIU G, WANG Y, et al. One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport[J]. Nano Letters, 2017, 17(6): 3965-3973. [56] QIN J, QIU G, JIAN J, et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications[J]. ACS Nano, 2017, 11(10): 10222-10229. [57] AN Q, MENG X, XIONG K, et al. Self-powered ZnS nanotubes/Ag nanowires MSM UV photodetector with high on/off ratio and fast response speed[J]. Scientific Reports, 2017, 7(1): 1-12. [58] LI Y, SHI Z, WANG L, et al. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors[J]. Materials Horizons, 2020, 7(6): 1613-1622. [59] NAWAZ M Z, XU L, ZHOU X, et al. CdS nanobelt-based self-powered flexible photodetectors with high photosensitivity[J]. Materials Advances, 2021, 2(18): 6031-6038. [60] PATIL R A, CHANG C, DEVAN R S, et al. Impact of nanosize on supercapacitance: Study of 1D Nanorods and 2D thin-films of Nickel oxide[J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9872-9880. [61] QIN J K, QIU G, HE W, et al. Epitaxial growth of 1D atomic chain based Se nanoplates on monolayer ReS2 for high-performance photodetectors[J]. Advanced Functional Materials, 2018, 28(48): 1806254. [62] DANG V Q, TRUNG T Q, KIM D, et al. Ultrahigh responsivity in graphene-ZnO nanorod hybrid UV photodetector[J]. Nano Micro Small, 2015, 11(25): 3054-3065. [63] HUO J, ZOU G, XIAO Y, et al. High performance 1D-2D CuO/MoS2 photodetectors enhanced by femtosecond laser-induced contact engineering[J]. Materials Horizons, 2023, 10(2): 524-535. [64] LIN P, ZHU L, LI D, et al. Tunable WSe2-CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector[J]. Nanoscale, 2018, 10(30): 14472-14479. [65] ZHAO D, CHEN Y, JIANG W, et al. Gate-tunable photodiodes based on mixed-dimensional Te/MoTe2 van der Waals heterojunctions[J]. Advanced Electronic Materials, 2021, 7(5): 2001066. [66] ZHANG Y, DENG T, LI S, et al. Highly sensitive ultraviolet photodetectors based on single wall carbon nanotube-graphene hybrid films[J]. Applied Surface Science, 2020, 512(15): 145651. [67] SUN G, LI B, LI J, et al. Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional P-N heterojunctions[J]. Nano Research, 2019, 12(5): 1139-1145. [68] GONG Y, ZHANG X, YANG T, et al. Vapor growth of CdS nanowires/WS2 nanosheet heterostructures with sensitive photodetections[J]. Nanotechnology, 2019, 30(34): 345603. [69] WANG G, HAN B, MAK C H, et al. Mixed-dimensional van der Waals heterostructure for high-performance and air-stable perovskite nanowire photodetectors[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 55183-55191. [70] XIE C, ZENG L, ZHANG Z, et al. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate[J]. Nanoscale, 2018, 10(32): 15285-15293. [71] LEE E W I, MA L, NATH D N, et al. Growth and electrical characterization of two-dimensional layered MoS2/SiC heterojunctions[J]. Applied Physics Letters, 2014, 105(20): 203504. [72] KANISAWA K, YAMAGUCHI H, HIRAYAMA Y. Two-dimensional growth of InSb thin films on GaAs(111)a substrates[J]. Applied Physics Letters, 2000, 76(5): 589-591. [73] LEE C H, McCULLOCH W, LEE E W I, et al. Transferred large area single crystal MoS2 field effect transistors[J]. Applied Physics Letters, 2015, 107(19): 043103. [74] YAO J, ZHENG Z, YANG G. Ultrasensitive 2D/3D heterojunction multicolor photodetectors: A synergy of laterally and vertically aligned 2D layered materials[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38166-38172. [75] WANG X, CHENG Z, XU K, et al. High-responsivity graphene/silicon heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888-891. [76] MAO J, YU Y, WANG L, et al. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode[J]. Advanced Science, 2016, 3(11): 1600018. [77] LU Z, XU Y, YU Y, et al. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition[J]. Advanced Functional Materials, 2020, 30(9): 1907951. [78] WU D, GUO C, WANG Z, et al. A defect-induced broadband photodetector based on WS2/pyramid Si 2D/3D mixed-dimensional heterojunction with a light confinement effect[J]. Nanoscale, 2021, 13(31): 13550-13557. [79] LI J, XI X, LIN S, et al. Ultrahigh sensitivity graphene/nanoporous GaN ultraviolet photodetectors[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 11965-11971. [80] ZHANG Y, WANG B, HAN Z, et al. Bidirectional photoresponse in a mixed-dimensional MoS2/Ge heterostructure and its optic-neural synaptic behavior for colored pattern recognition[J]. ACS Photonics, 2023, 10(5): 1575-1582. [81] JIA C, WU D, WU E, et al. A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity[J]. Journal of Materials Chemistry C, 2019, 7(13): 3817-3821. [82] WU D, GUO J, DU J, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction[J]. ACS Nano, 2019, 13(9): 9907-9917. [83] SORIFI S, KAUSHIK S, SINGH R. A GaSe/Si-based vertical 2D/3D heterojunction for high-performance self-driven photodetectors[J]. Nanoscale Advances, 2022, 4(2): 479-490. [84] BRITNELL L, RIBEIRO R M, ECKMANN A, et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311-1314. [85] KIM Y, KIM S J, CHO S, et al. High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers[J]. Scientific Reports, 2015, 5(1): 12345. [86] NIAN Q, GAO L, HU Y, et al. Graphene/PbS-quantum dots/graphene sandwich structures enabled by laser shock imprinting for high performance photodetectors[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44715-44723. [87] LI G, SONG Y, FENG S, et al. Improved optoelectronic performance of MoS2 photodetector via localized surface plasmon resonance coupling of double-layered Au nanoparticles with sandwich structure[J]. ACS Applied Electronic Materials, 2022, 4(4): 1626-1632. [88] WANG G, LI L, FAN W, et al. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance[J]. Advanced Functional Materials, 2018, 28(22): 1800339. [89] ZENG P, WANG W, HAN D, et al. MoS2/WSe2 VDW heterostructures decorated with PbS quantum dots for the development of high-performance photovoltaic and broadband photodiodes[J]. ACS Nano, 2022, 16(6): 9329-9338. [90] MAITY S, SARKAR K, KUMAR P. Layered heterostructures based on MoS2/MoSe2 nanosheets deposited on GaN substrates for photodetector applications[J]. ACS Applied Nano Materials, 2023, 6(6): 4224-4235.