-
如图 1a所示,单根A-ZnO微米管的内外壁都非常平整光滑,其端面为六边形,微米管的直径约为154 μm,长度约为5 mm。图 1b为图 1a的壁厚局部放大图,微米管壁厚约为1.46 μm。图 1c为A-ZnO微米管的XRD图谱。与标准卡片(JCPDS No.80-0074)对比分析可以发现,A-ZnO微米管的XRD衍射峰清晰尖锐,晶体结构为六方纤锌矿结构。为了激发与缺陷有关的2阶纵声学声子(longitudinal acoustic phonon,LA)模式(2LA),采用激发光偏振方向与A-ZnO微米管c轴平行的背散射配置[15]。图 1d展示了A-ZnO微米管6个喇曼振动模式,分别是位于203 cm-1处的2Elow, 2模式、332 cm-1处的Ehigh, 2-Elow, 2模式、377 cm-1和410 cm-1处具有A1和E1对称性的横光学声子(transverse optical phonon,TO)模式、537 cm-1处的2LA模式以及666 cm-1处的横声学声子+纵光学声子(transverse acoustic phonon+longitudinal optical phonon,TA+LO)模式,其中2LA喇曼振动模式是与A-ZnO微米管的本征VZn缺陷有关[16-17],A1和E1分别为喇曼振动方向平行和垂直于c轴的极性模式。通过XRD和喇曼光谱的表征可知,OVSP法所生长的A-ZnO微米管为沿c轴取向生长的单晶结构。
-
图 2a为A-ZnO微米管的XPS全谱和精细谱,表明A-ZnO微米管中只包括Zn原子和O原子。图 2b为以C 1s的284.8 eV峰进行能谱标定的精细谱。图 2c为Zn元素2p电子态的精细谱,Zn 2p3/2与Zn 2p1/2的中心峰分别位于1021.5 eV和1044.5 eV,结合能间距为23 eV[18]。相比于ZnO块体单晶,A-ZnO微米管的Zn 2p电子态束缚能提高约0.4 eV,归因于富氧气氛下生长的A-ZnO微米管具有较高浓度的VZn缺陷,降低了Zn价电子浓度,进而提高了内层电子束缚能[8]。图 2d为A-ZnO微米管和air-ZnO微米管O 1s的精细XPS谱并进行高斯-洛伦兹拟合。A-ZnO微米管中位于530.3 eV、531.6 eV、和532.8 eV处的拟合峰分别对应晶格氧(lattice oxygen,OL)、空位氧(oxygen vacancy,OV)和表面化学吸附氧(surface chemicalab-sorbed oxygen,OC)[19]。根据OV与OL的峰面积比值R可半定量表明A-ZnO微米管中OV浓度高低。可以发现,A-ZnO微米管的R值为0.82,相比air-ZnO微米管降低了24.8%,表明VO缺陷在富氧气氛下生长被抑制,可能导致深施主能级向导带底(conduction band minimum,CBM)移动[20]。
-
前期研究成果表明,OVSP方法生长的A-ZnO微米管在室温下存在稳定的DAP发光峰[21-25]。图 3a为室温下A-ZnO微米管和air-ZnO微米管的典型PL发光峰。包括位于3.26 eV和3.29 eV处的NBE发光峰以及3.14 eV和3.17 eV处DAP复合发光峰,发现A-ZnO微米管的DAP与NBE发光峰强度比值为0.67,比air-ZnO微米管高约1.63倍。当温度降低至80 K时,A-ZnO微米管的PL发光峰产生了明显的分峰现象,出现位于3.23 eV处的DAP发光峰及其1阶声子半线发光峰(longitudinal optical phonon replicas of the DAP transition,DAP-LO)[26](即DAP-1LO)、位于3.31 eV处的FA发光峰、位于3.36 eV处的A0X发光峰以及位于3.37 eV处的自由激子(free exciton,FX)发光峰。其中,A-ZnO微米管的A0X与FA发光峰强度比值为0.43,比air-ZnO微米管高约2.39倍。A-ZnO微米管的A0X发光峰强度增强与N掺杂而引起的A0X增强相似[27]。可以推断,富氧环境下生长的A-ZnO微米管受主态缺陷浓度得到提高。FA发光峰的浅受主结合能Ea根据下式计算获得[28]:
$ E_{\mathrm{a}}=E_{\mathrm{g}}-E_{\mathrm{FA}}+\frac{k_{\mathrm{B}} T}{2} $
(1) 图 3 a—A-ZnO微米管和air-ZnO微米管分别在300 K和80 K时的PL光谱 b~d—A-ZnO微米管在不同温度时的PL光谱
Figure 3. a—PL spectra of A-ZnO microtube and air-ZnO microtube at 300 K and 80 K respectively b~d—PL spectra of A-ZnO microtube at different temperature
式中:Eg是低温下的ZnO带隙(Eg=3.437 eV);EFA是FA跃迁能;kB是玻尔兹曼常数;T是温度。计算结果表明,A-ZnO微米管的Ea≈132 meV,表明浅受主能级位置位于价带顶附近。常温下VZn一般包含两个精细能级:(a)位于VBM以上0.1 eV~0.2 eV处的0/1-电荷态转变能级;(b)位于VBM以上0.8 eV~1.2 eV处的1-/2-电荷态转变能级[4]。根据计算可以推断,A-ZnO微米管的A0X、FA以及DAP发光峰与VZn(0/1-)缺陷态有关。
图 3b~图 3d展示了A-ZnO微米管的PL发光峰强度的温度依赖关系。如图 3b所示,在80 K~160 K温度范围内,随着温度升高,电子-声子相互作用导致A-ZnO微米管带隙变窄,进而使得PL发射峰发生红移[29]。同时,DAP、FA以及FX的发光峰强度分别下降为原来的28.2%、9.8%以及24.3%。DAP-1LO因声子散射的增强而消失,A0X发光峰由于热离化形成自由激子简并到FX发光峰。图 3c为在170 K~200 K温度范围内,A-ZnO微米管发光峰强度随着温度升高而出现增强现象,即发生了发光“负热淬灭”效应。图 3d为在210 K~300 K温度范围内,FA和FX发光峰逐渐简并到较宽的NBE发光峰中,而发光峰强度随着温度升高而出现减弱现象,即恢复为发光热淬灭过程。
为了揭示A-ZnO微米管PL发光“负热淬灭”物理机制,通过多能级模型拟合PL发光峰强度与温度的依赖关系[30]:
$ I(T)=I(0) \frac{1+\sum\limits_{q=1}^w D_q \exp \left[-E_q{ }^{\prime} /\left(k_{\mathrm{B}} T\right)\right]}{1+\sum\limits_{j=1}^m C_j \exp \left[-E_j /\left(k_{\mathrm{B}} T\right)\right]} $
(2) 式中:I(T)和I(0)分别表示温度为T K和0 K时的PL发光峰强度;Eq′为“负热淬灭”效应的活化能;Ej为非辐射复合过程的活化能,j取整数代表着不同非辐射复合过程,q取整数,代表不同负热淬灭过程;玻尔兹曼常数kB=8.617×10-5 eV/K;Dq和Cj为拟合常数。如图 4a所示,w=1、m=2时拟合效果较好。根据FA发光峰强度与温度拟合结果可得:E1′=481 meV,E1 =531 meV和E2 =31 meV。前期的研究表明,较浅的E2能级无法作为有效复合中心[14],因此式(2)包含一个“负热淬灭”过程和一个非辐射复合过程。此外,FX与DAP发光峰的E1′值较为接近,分别为417 meV和423 meV,两者与FA的E1′值差值分别为64 meV和58 meV。由于ZnO的DAP发光峰中浅施主能级以及激子结合能Eb≈60 meV。可以推断,A-ZnO微米管的PL发光强度随温度的变化过程中,在CBM以下481 meV处存在中间态能级。随着温度升高时,局限在该陷阱中心的束缚激子获得热能而被激活,参与复合跃迁辐射,致使发光强度反常增强。同时,在A-ZnO微米管CBM以下的531 meV处还存在非辐射复合中间态能级,电子-空穴以肖克利-里德-霍尔(Shockley-Read-Hall,SRH)非辐射复合[14]。ZnO中的VO在常温下具有两个精细能级:(a)位于VBM以上约1.82 eV处的0/1+电荷态转变能级;(b)位于VBM以上约2.51 eV处的1+/2+电荷态转变能级[4]。可以推断,VO是A-ZnO微米管发光“负热淬灭”效应的中间态陷阱能级[31]。图 4b展示出FX和A0X发光峰随温度升高发生红移,采用Varshni公式进行拟合[32]:
$ E(T)=E(0)-\frac{\alpha T^2}{\beta+T} $
(3) 图 4 a—A-ZnO微米管的FA、FX和DAP发光峰强度随温度变化规律及其拟合曲线 b—A-ZnO微米管的FX和A0X发光峰能量随温度变化规律及其拟合曲线 c—air-ZnO微米管和A-ZnO微米管能带结构示意图
Figure 4. a—intensities of FA, FX and DAP emission of A-ZnO with temperature, and the corresponding fitting curves b—photon energies of FX and A0X emission of A-ZnO with temperature, and the corresponding fitting curves c—energy level diagrams of air-ZnO microtube and A-ZnO microtube, respectively
式中:E(T)和E(0)分别表示T K和0 K时PL发射峰的跃迁能;α和β为拟合常数。当温度为80 K时,拟合结果得到A0X与FX发光峰对应光子能量差值约15 meV。随着温度升高,A0X由于热解离而逐渐转变为FX。根据拟合结果可以推算出,A0X在202 K时全部简并为FX发射峰,高于air-ZnO微米管A0X发光峰的简并温度(163 K)[14],证明了富氧气氛生长的A-ZnO微米管富含浅受主缺陷浓度,可束缚更多的自由激子,致使A0X发生简并的温度提高,弱化了FX的发光热淬灭效应。图 4c展示了A-ZnO微米管的能带结构示意图。相较于前期工作研究中(air-ZnO微米管的E1′值为CBM以下488 meV处,E1值为CBM以下628 meV处[14]),氧气环境下生长的A-ZnO微米管中间局域态能级位置更接近CBM。
-
对于ZnO基紫外探测器件,其光电探测性能的调控取决于对缺陷态的控制。为了研究A-ZnO微米管中缺陷改变对紫外探测器光响应性能的影响,采用In/Ga合金作为A-ZnO微米管的两端接触电极,构建了金属-半导体-金属结构本征光导型光电探测器,如图 5a所示。图 5b为A-ZnO微米管和air-ZnO微米管在20 V偏压下的电流-电压(I-V)曲线。其电阻率(electrical resistivity)ρ可通过以下公式计算得出[33]:
$ \rho=R \times \frac{S}{l}=R \times \frac{3 \sqrt{3} t_{\mathrm{w}}\left(d-t_{\mathrm{w}}\right)}{2 l} $
(4) 图 5 a—A-ZnO微米管光电探测器结构示意图 b—A-ZnO微米管与air-ZnO微米管电流对应电压的变化曲线 c—不同光能量密度下A-ZnO微米管的光电流响应特性 d—A-ZnO微米管归一化的光电流响应特性
Figure 5. a—schematic of the A-ZnO microtube detector b—voltage corresponding to current of A-ZnO microtubes and air-ZnO microtubes c—photocurrent response of A-ZnO microtube under various light energy intensity d—the normalized photocurrent response of A-ZnO microtube
式中:R是微米管的电阻;S是微米管截面面积;tw是微米管管壁厚度;d是微米管的直径;l是微米管的长度。计算结果表明,A-ZnO微米管ρ=10.06×10-2 Ω · cm,相较air-ZnO微米管电阻率降低了7倍,这归因于在A-ZnO微米管中浅受主浓度的提升。图 5c为A-ZnO微米管探测器在10 mV偏压下的紫外光响应特性。当紫外光照射A-ZnO微米管器件时,器件的光电流迅速上升,随后趋于稳定;当停止紫外光照时,电流逐渐衰减到初始值。随着紫外光能量密度的增加,相应的光电流有所增加。为了定量分析器件的紫外光响应特性,图 5d为A-ZnO微米管对355 nm紫外光的瞬态响应谱。通过拟合可以获得A-ZnO微米管光电流的响应时间[34]:
$ \begin{aligned} I(t)= & I_0+A_1\left[1-\exp \left(-t / \tau_{1, \mathrm{r}}\right)\right]+ \\ & A_2\left[1-\exp \left(-t / \tau_{2, \mathrm{r}}\right)\right] \end{aligned} $
(5) $ I(t)=I_0+A_1 \exp \left(-t / \tau_{1, \mathrm{~d}}\right)+A_2 \exp \left(-t / \tau_{2, \mathrm{~d}}\right) $
(6) 式中:I(t)为随时间变化对应的电流;I0和A1、A2、A3、A4分别是初始暗电流和拟合常数;τ1,r和τ2,r分别表示响应的快速上升时间和缓慢上升时间;τ1,d和τ2,d分别表示恢复的快速下降时间和缓慢下降时间。通过计算结果得到A-ZnO微米管探测器的快速和缓慢上升沿与下降沿时间分别为1.48 s,34.03 s,17.94 s,244.60 s。相较于air-ZnO微米管的响应时间(3 s, 49.3 s, 38 s, 360 s)[26],A-ZnO微米管的响应时间缩短51%,说明该器件对355 nm紫外光具有良好的响应能力。早期的研究发现,ZnO基紫外光电探测器的光响应特性与O2在其表面的吸附和解吸附过程有关[35-36]。结合本文中缺陷能级分析可知,A-ZnO微米管与VO缺陷有关的中间态陷阱能级位置向CBM靠近,有利于浅施主VO缺陷增多,从而捕获O2分子的能力变强[37-38]。此时,O2分子更容易吸附在A-ZnO微米管表面促进耗尽层的形成。在紫外光照下,耗尽层中的内建电场能够显著提高光生载流子的分离率,缩短了A-ZnO微米管探测器的光响应时间。当停止紫外光照,光生载流子重新复合,O2分子在VO缺陷作用下快速再吸附使得A-ZnO微米管电导率迅速降低,实现了基于负热淬灭效应的中间态能级调控的紫外响应速率提升,为未来紫外光电探测器件的优化提供了新思路。
负热淬灭对富受主型ZnO微米管光电性能的研究
Effect of negative thermal quenching on optoelectronic properties of acceptor-rich ZnO microtubes
-
摘要: 为了研究ZnO本征缺陷种类与浓度对激子跃迁复合和载流子输运特性的影响,采用改进的光学气化过饱和析出法制备了本征富受主型ZnO(A-ZnO)微米管。通过氧气生长气氛实现了施主-受主对和中性受主束缚激子A0X的浓度调控,揭示了缺陷浓度调控中间态能级产生负热淬灭效应的机制。结果表明,通过提高浅受主缺陷浓度以及提升中间态能级位置,可将A-ZnO微米管的电阻率下降7倍,紫外光响应时间缩短51%,实现了A-ZnO微米管的导电性增强和高效紫外探测。此研究结果为ZnO微纳结构半导体光电器件性能调控提供了新思路。Abstract: The effect of intrinsic defect types and concentrations on the behaviors of exciton transitions and carrier transports in ZnO was investigated. The intrinsic acceptor-rich ZnO (A-ZnO) microtubes were grown by the developed optical vapor supersaturation precipitation. The oxygen growth carries gas (O2) was used to realize the regulation of donor acceptor pair and neutral acceptor bound exciton A0X concentrations. The negative thermal quenching phenomenon was attributed to the middle energy state dominated by the defect concentrations. The abundant shallow acceptor concentrations and the middle energy state shifting up result in the electrical resistivity reduction by 7 times and the response time decreasing by 51% compared with the A-ZnO microtubes grown in air, leading to the high-efficient ultraviolet detector with high electrical resistivity. The present work provides a novel platform to optimize ZnO-micro/nanostructures-based optoelectronic devices.
-
Key words:
- optoelectronics /
- negative thermal quenching /
- photoluminescence /
- ultraviolet detection
-
图 4 a—A-ZnO微米管的FA、FX和DAP发光峰强度随温度变化规律及其拟合曲线 b—A-ZnO微米管的FX和A0X发光峰能量随温度变化规律及其拟合曲线 c—air-ZnO微米管和A-ZnO微米管能带结构示意图
Figure 4. a—intensities of FA, FX and DAP emission of A-ZnO with temperature, and the corresponding fitting curves b—photon energies of FX and A0X emission of A-ZnO with temperature, and the corresponding fitting curves c—energy level diagrams of air-ZnO microtube and A-ZnO microtube, respectively
图 5 a—A-ZnO微米管光电探测器结构示意图 b—A-ZnO微米管与air-ZnO微米管电流对应电压的变化曲线 c—不同光能量密度下A-ZnO微米管的光电流响应特性 d—A-ZnO微米管归一化的光电流响应特性
Figure 5. a—schematic of the A-ZnO microtube detector b—voltage corresponding to current of A-ZnO microtubes and air-ZnO microtubes c—photocurrent response of A-ZnO microtube under various light energy intensity d—the normalized photocurrent response of A-ZnO microtube
-
[1] 申德振, 梅增霞, 梁会力, 等. 氧化锌基材料、异质结构及光电器件[J]. 发光学报, 2014, 35(1): 1-60. SHEN D Zh, MEI Z X, LIANG H L, et al. ZnO-based material, heterojunction and photoelctronic device[J]. Chinese Journal of Luminescence, 2014, 35(1): 1-60(in Chinese). [2] 黄丰, 郑伟, 王梦晔, 等. 氧化锌单晶生长、载流子调控与应用研究进展[J]. 人工晶体学报, 2021, 50(2): 209-243. HUANG F, ZHENG W, WANG M Y, et al. Development of zinc oxide: Bulk crystal growth, arbitrary regulation of carrier concentration and practical applications[J]. Journal of Synthetic Crystals, 2021, 50(2): 209-243(in Chinese). [3] 谢修为, 李炳辉, 张振中, 等. 点缺陷调控: 宽禁带Ⅱ族氧化物半导体的机遇与挑战[J]. 物理学报, 2019, 68(16): 167802. XIE X W, LI B H, ZHANG Zh Zh, et al. Point defects: Key issues for Ⅱ-oxides wide-bandgap semiconductors development[J]. ActaPhysicasinica, 2019, 68(16): 167802(in Chinese). [4] JANOTTI A, van de WALLE C G. Native point defects in ZnO[J]. Physical Review, 2007, B76(16): 165202. [5] KURBANOV S S, PANIN G N, KANG T W. Spatially resolved investigations of the emission around 3.31 eV (A-line) from ZnO nanocrystals[J]. Applied Physics Letters, 2009, 95(21): 211902. doi: 10.1063/1.3264084 [6] SUSHAMA S, MURKUTE P, GHADI H, et al. Enhancement in structural, elemental and optical properties of boron-phosphorus Co-doped ZnO thin films by high-temperature annealing[J]. Journal of Luminescence, 2021, 238: 118221. doi: 10.1016/j.jlumin.2021.118221 [7] SHIRRA M, SCHNEIDER R, REISER A, et al. Stacking fault related 3.31 eV luminescence at 130 meV acceptors in zinc oxide[J]. Physical Review, 2008, B77(12): 125215. [8] WANG Q, YAN Y Zh, ZENG Y, et al. Free-standing undoped ZnO microtubes with rich and stable shallow acceptors[J]. Scientific Reports, 2016, 6: 27341. [9] WANG Q, YAN Y Zh, ZENG Y, et al. Experimental and numerical study on growth of high-quality ZnO single-crystal microtubes by optical vapor supersaturated precipitation method[J]. Journal of Crystal Growth, 2017, 468: 638-644. [10] WANG Q, YAN Y Zh, QIN F F, et al. A novel ultra-thin-walled ZnO microtube cavity supporting multiple optical modes for bluish-violet photoluminescence, low-threshold ultraviolet lasing and micro-fluidic photodegradation[J]. NPG Asia Materials, 2017, 9: e442. [11] XING C, LIU W, WANG Q, et al. Current-induced thermal tunneling electroluminescence in a single highly compensated semiconductor microrod[J]. Iscience, 2020, 23(6): 101210. [12] PAN Y M, YAN Y Zh, WANG Q, et al. Efficient defect control of zinc vacancy in undoped ZnO microtubes for optoelectronic applications[J]. Journal of Applied Physics, 2022, 131(10): 105105. [13] 秦莉, 张喜田, 梁瑶, 等. 氧化锌微米花的共振拉曼和"负热淬灭"效应[J]. 物理学报, 2006, 55(6): 3120-3121. QIN L, ZHANG X T, LIANG Y, et al. Resonant Raman scattering and "negative thermal quenching" of ZnO microflowers[J]. Acta Physica Sinica, 2006, 55(6): 3120-3121(in Chinese). [14] 王强, 杨立学, 刘北云, 等. 本征富受主型ZnO微米管光致发光的温度调控机制[J]. 物理学报, 2020, 69(19): 197701. WANG Q, YANG L X, LIU B Y, et al. Thermal regulation mechanism of photoluminescence in intrinsic acceptor-rich ZnO microtube[J]. Acta Physica Sinica, 2020, 69(19): 197701(in Chinese). [15] CUSCO R, ALARCON-LLADO E, IBANEZ J, et al. Temperature dependence of Raman scattering in ZnO[J]. Physical Review, 2007, B75(16): 165202. [16] SIMA M, MIHUT L, VASILE E, et al. Optical properties of Mn doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy[J]. Thin Solid Films, 2015, 590: 141-147. [17] ZHAO J, YAN X Q, YANG Y, et al. Raman spectra and photoluminescence properties of In-doped ZnO nanostructures[J]. Materials Letters, 2010, 64(5): 569-572. [18] TAY Y Y, SUN C Q, CHEN P. Size dependence of Zn 2p 3/2 binding energy in nanocrystalline ZnO[J]. Applied Physics Letters, 2006, 88(17): 173118. [19] CHEN M, WANG X, YU Y H, et al. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films[J]. Applied Surface Science, 2000, 158(1-2): 134-140. [20] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究[J]. 物理学报, 2014, 63(14): 147101. HOU Q Y, G Sh Q, ZHAO Ch W. First-principle study of the effects of oxygen vacancy on the electronic structure and the absorption spectrum of ZnO[J]. Acta Physica Sinica, 2014, 63(14): 147101(in Chinese). [21] TU N, VAN BUI H, TRUNG D Q, et al. Surface oxygen vacancies of ZnO: A facile fabrication method and their contribution to the photoluminescence[J]. Journal of Alloys and Compounds, 2019, 791: 722-729. [22] PRZEZDZIECKA E, KAMINSKA E, PASTERNAK I, et al. Photoluminescence study of p-type ZnO∶Sb prepared by thermal oxidation of the Zn-Sb starting[J]. Physical Review, 2007, B76(19): 193303. [23] 赵涛, 李清山, 董艳锋, 等. 氧压对PLD制备掺铜ZnO薄膜光学性质的影响[J]. 激光技术, 2011, 35(6): 781-783. doi: 10.3969/j.issn.1001-3806.2011.06.016 ZHAO T, LI Q Sh, DONG Y F, et al. Effect of oxygen pressure on optical properties of Cu-doped ZnO thin films prepared by PLD[J]. Laser Technology, 2011, 35(6): 781-783(in Chinese). doi: 10.3969/j.issn.1001-3806.2011.06.016 [24] 霍艳丽, 李少兰, 马自侠. 溶液浓度对ZnO纳米棒形貌和发光的影响[J]. 激光技术, 2012, 36(6): 776-779. doi: 10.3969/j.issn.1001-3806.2012.06.016 HU Y L, LI Sh L, MA Z X. Effect of solution concentration on the morphology and photoluminescence of ZnO nanorods[J]. Laser Technology, 2012, 36(6): 776-779(in Chinese). doi: 10.3969/j.issn.1001-3806.2012.06.016 [25] CONRADT J, SARTOR J, THIELE C, et al. Catalyst-free growth of zinc oxide nanorod arrays on sputtered aluminum-doped zinc oxide for photovoltaic applications[J]. Journal of Physical Chemistry, 2011, C115(9): 3539-3543. [26] TEKE A, OZGUR U, DOGAN X, et al. Excitonic fine structure and recombination dynamics in single-crystalline ZnO[J]. Physical Review, 2004, B70(19): 195207. [27] HU L N, WANG Y, JIANG Y J, et al. N-ion-implanted ZnO microtubes for highly-efficient UV detection[J]. Optical Materials, 2023, 138: 113683. [28] LOOK D C, REYNOLDS D C, LITTON C W, et al. Characterization of homoepitaxialp-type ZnO grown by molecular beam epitaxy[J]. Applied Physics Letters, 2002, 81(10): 1830-1832. [29] ODONNELL K P, CHEN X. Temperature-dependence of semiconductor band-gaps[J]. Applied Physics Letters, 1991, 58(25): 2924-2926. [30] SHIBATA H. Negative thermal quenching curves in photoluminescence of solids[J]. Japanese Journal of Applied Physics, 1998, 37(2): 550-553. [31] 廖逸民, 闫胤洲, 王强, 等. ZnO微米晶的激光制备及发光性能研究[J]. 光谱学与光谱分析, 2022, 42(10): 3001-3005. LIAO Y M, YAN Y Zh, WANG Q, et al. Laser-induced growth device and optical properties of ZnO microcrystals[J]. Spectroscopy and Spectral Analysis, 2022, 42(10): 3001-3005(in Chinese). [32] VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1): 149-154. [33] HUANG Z H, YAN Y Zh, XING Ch, et al. Enhanced properties of hierarchically-nanostructured undoped acceptor-rich ZnO single-crystal microtube irradiated by UV laser[J]. Journal of Alloys and Compounds, 2019, 789: 841-851. [34] 齐俊杰, 徐旻轩, 胡小峰, 等. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究[J]. 物理学报, 2015, 64(17): 172901. QI J J, XU M X, HU X F, et al. Frabrication and properties of self-powered ultraviolet detectors based on one-demensional ZnO nanomaterials[J]. Acta Physica Sinica, 2015, 64(17): 172901(in Chinese). [35] 郭亮, 赵东旭, 张振中, 等. 退火处理对ZnO纳米线紫外探测器性能的改善[J]. 发光学报, 2011, 32(8): 844-847. GUO L, ZHAO D X, ZHANG Zh Zh, et al. Effects of annealing treatmenton on ZnO nonowires used for utraviotet detector[J]. Chinese Journal of Luminescence, 2011, 32(8): 844-847(in Chinese). [36] ZENG Y J, YE Z Z, LU Y F, et al. Investigation on ultraviolet photoconductivity in p-type ZnO thin films[J]. Chemical Physics Letters, 2007, 441(1/3): 115-118. [37] ZHENG Zh Y, LIU K W, CHEN X, et al. High-performance flexible UV photodetector based on self-supporting ZnO nano-networks fabricated by substrate-free chemical vapor deposition[J]. Nanotechnology, 2021, 32(48): 475201. [38] LI G D, ZHANG H, MENG L X, et al. Adjustment of oxygen vacancy states in ZnO and its application in ppb-level NO2 gas sensor[J]. Science Bulletin, 2020, 65(19): 1650-1658.