-
本文作者所设计的OPA如图 1所示,红色为Si,蓝色为SiN。制造材料包括自上而下分布的两层间距150 nm的SiN以及一层Si,其中,SiN-Ⅰ层被用来制作总线波导、分光阵列和平板波导;SiN-Ⅱ层被用来制作扰动光栅;而Si层则被用来制作热光移相器;各层之间的间隔层、掩埋层以及盖层为氧化硅。此次制作的具体参数如下:SiN波导厚度HSiN=200 nm,宽度为1.5 μm;SiN光栅厚度Hg=200 nm,光栅周期P=900 nm,占空比为50%;而Si波导厚度HSi=220 nm,宽度为450 nm,相邻波导间隔为2 μm。此外,SiN-Ⅰ层与Si层之间的光互连是通过模斑转换器实现的。
该OPA通过移相器阵列对各通道进行相位调谐实现光在φ轴的光束偏转及对输入光进行波长调谐,实现光束在θ轴的光束偏转。其光束转向公式为[32]:
$ \left\{\begin{array}{l} \varphi=\arcsin [\lambda \Delta \phi /(2 d)] \\ \theta=\arcsin \left[\left(n_{\text {eff }}-\lambda / P\right) / n_{\mathrm{c}}\right] \end{array}\right. $
(1) 式中:λ为输入光波长;d为Si波导相邻间隔,即2 μm;Δϕ为相邻通道间的相位差;neff为天线的光栅有效折射率;nc为包层折射率。Δϕ=±π时,主瓣与第一栅瓣强度相等,此时主瓣的转向角度即为光斑最大转向角度。之后可以得到光斑发散角为[33]:
$ \left\{\begin{array}{l} \Delta \theta=0.886 \lambda /(L \cos \theta) \\ \Delta \varphi=0.886 \lambda /(N d \cos \varphi) \end{array}\right. $
(2) 式中:L为天线长度,L=mP;m为光栅周期数;N为输入通道数。
首先使用时域有限差分法(finite-difference time-domain, FDTD)对天线性能进行评估。在天线视场计算中,为了节省资源以及减小仿真时间,将模型缩小为16通道。如图 2a和图 2b所示,当输入光从1500 nm调谐至到1600 nm时,所设计的OPA在θ方向上的扫描范围为7.3°,在φ方向上的扫描范围随着波长增大从43.5°逐渐增大到46.2°。在发散角仿真计算时,将模型扩展到了128输入通道和300 μm的天线长度。由图 2c和图 2d可得,输入光波长为1550 nm时的发散角为0.3° ×0.4°(Δφ×Δθ)。根据式(2),可以得到天线有效长度L=200 μm,阵列宽度Nd=256 μm。
图 2 a—θ方向扫描范围 b—φ方向扫描范围 c—θ方向发散角 d—φ方向发散角
Figure 2. a—beam steering range in θ axis b—beam steering range in φ axis c—divergence angle in θ axis d—divergence angle in φ axis
本文中所展示的OPA由新加坡Advanced Micro Foundry代工,图 3a为设计的版图,图 3b为封装后的芯片。
-
图 4a为热光移相器件测试结构。编号为SIN-MZI-2的测试结构用于测试芯片中使用的热光移相器的效率。图 4b为位于中间的第2组5级级联1×2多模干涉耦合器结构,用于测试光学相控阵中使用的1×2多模干涉耦合器损耗。红框中的3组波导结构用于测试Si波导和SiN波导的模斑转换器,其自上而下分别有0对、1对和3对Si-SiN-Si模斑转换器过渡。OPA中使用的热光移相器电阻为11 kΩ,测试得到的2π相移电压约为18 V,对应的电功耗为30 mW。由此得到该128通道光学相控阵的驱动电路需要保证每一个通道都要能够提供至少18 V的电压和30 mW的电功率。SiN的热光系数约为Si的1/5,如果使用SiN热光移相器,所需要的电功率将超过100 mW。
图 4 a—热光移相器测试结构 b—1×2多模干涉耦合器测试结构
Figure 4. a—test structure of thermo-optic phase shifter b—test structure of 1×2 multimode interferometric coupler
图 5a为基于Si热光移相器的马赫-曾德尔调制器特性。图 5b为从第1级~第5级多模干涉耦合器的各个输出端口得到的光功率。去掉端口2的大偏差数据点后,对端口1~端口5得到的光功率做线性拟合得到直线斜率为-3.34,即1级多模干涉耦合器的单端口插损为3.34 dB。最后1级多模干涉耦合器的输出端口功率分别为-24 dBm和-23.9 dBm,得到其分光比为49.4%∶50.6%。图 5c表示了相同输入功率下,Si-SiN模斑转换器的耦合损耗。
图 5 a—基于Si热光移相器的马赫-曾德尔调制器特性 b—级联SiN多模干涉耦合器各端口输出功率 c—Si和SiN波导模斑转换器的损耗
Figure 5. a—characterization of Mach-Zehnder modulator based on the silicon thermo-optic phase shifter b—output power at each port of the cascaded silicon nitride multimode interferometric coupler c—losses of silicon and silicon nitride waveguide spot size converters
一对模斑转换器完成一次Si-SiN-Si的光功率转移,其耦合损耗L计算方式为:
$ L=\frac{1}{3}\left(L_1-L_0+\frac{L_3-L_0}{3}+\frac{L_3-L_1}{2}\right) $
(3) 式中:L0、L1和L3分别为图 4b红框中3个Si-SiN模斑转换器测试结构的损耗;L0为自上而下第1个结构(包含0对模斑转换器)的损耗;L1为第2个结构(包含1对模斑转换器)的损耗;L3为第3个结构(包含3对模斑转换器)的损耗。通过式(3)等效取多次平均,降低随机误差的影响。由此得到,在1550 nm时,一对模斑转换器的耦合损耗为0.52 dB。
图 6为输入光波长1550 nm时,芯片在φ方向上的转向结果。对应扫描范围为43.2°,与仿真结果一致。此外,从图中可以看出,转向中远场存在大量杂散光,测试结果表明所设计的芯片旁瓣电平抑制比(side-lobe level, SLL)仅为8 dB,小于理论的12 dB左右。这是由于此次设计的芯片电极较为密集,封装技术难度大,最终128个热光移相器中大约100个正常工作,故障率约为21%。图中的杂散光就是由上述故障的通道所导致的。在接下来的工作中,将优化设计以消除负面结果。
图 7为输入光波长从1500 nm调谐至1600 nm时的扫描结果。从图中可以看出,θ方向上的扫描范围为7.4°。同时,φ方向上的扫描范围随着波长的增加逐渐从41°增加到45.5°。
图 7 a—输入光波长从1500 nm调谐至1600 nm时φ方向扫描图 b—输入光波长从1500 nm调谐至1600 nm时θ方向扫描图
Figure 7. a—beam steering angle in φ axis (λ=1500 nm~1600 nm) b—beam steering angle in θ axis (λ=1500 nm~1600 nm)
图 8为输入光波长为1550 nm时的光斑。图 9则显示了当输入光波长为1550 nm时θ轴和φ轴的发散角,对应值为0.33°×0.37°(Δφ×Δθ)。
图 10中为芯片输出光功率和输入光功率的关系。对数据进行拟合可以得到芯片的整体损耗为10.8 dB。其中SiN波导的损耗为1.2 dB/cm,SiN的端面耦合器损耗为3.6 dB,7级光分束阵列的损耗为2.38 dB,SiN-Si-SiN的波导过渡结构损耗为0.52 dB,从而得到天线的损耗约为3 dB。同时随着输入光功率增加,未出现输出光功率趋于饱和的现象,很好地满足了高功率输入的需求,达到设计预期。
基于SiN平板波导光栅的128通道光学相控阵
128-channel OPA based on SiN slab waveguide grating antenna
-
摘要: 为了避免全硅光学相控阵(OPA)的输出光功率饱和现象以及氮化硅的低移相效率,采用硅与氮化硅相结合的设计思路, 在实现高功率输入的同时保证了调相效率;此外,硅基集成OPA为了避免通道间的相互耦合所引起的相位噪声,波导间距大于半波长,导致栅瓣的存在,进而使得扫描范围受限,故采用硅波导作为天线前的输入波导, 以减小阵元间距。结果表明,芯片最终实现了41°×7.4°的扫描范围以及10.7 dB的芯片损耗。该研究对于OPA芯片的进一步改进是有帮助的。Abstract: In order to avoid the saturation phenomenon of output optical power of all silicon optical phased array (OPA) and the low phase shifting efficiency of silicon nitride, a design concept combining silicon and silicon nitride was adopted, which ensured the phase shifting efficiency while achieving high power input. In addition, in order to avoid phase noise caused by mutual coupling between channels, silicon-based integrated OPA had waveguide spacing greater than half wavelength, which led to the presence of gate lobes and limited the scanning range. To solve this problem, a silicon waveguide was used as the input waveguide in front of the antenna to reduce the array elements spacing. The results show that, the chip ultimately achieves a scanning range of 41°×7.4° and a chip loss of 10.7 dB. This study is helpful for further improvement of OPA chips.
-
Key words:
- integrated optics /
- diffraction /
- gratings /
- optical phased array
-
图 5 a—基于Si热光移相器的马赫-曾德尔调制器特性 b—级联SiN多模干涉耦合器各端口输出功率 c—Si和SiN波导模斑转换器的损耗
Figure 5. a—characterization of Mach-Zehnder modulator based on the silicon thermo-optic phase shifter b—output power at each port of the cascaded silicon nitride multimode interferometric coupler c—losses of silicon and silicon nitride waveguide spot size converters
-
[1] POULTON C V, BYRD M J, RUSSO P, et al. Long-range LiDAR and free-space data communication with high-performance optical phased arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(5): 1-8. [2] BHARGAVA P, KIM T, POULTON C V, et al. Fully integrated coherent LiDAR in 3D-integrated silicon photonics/65 nm CMOS[C]//2019 Symposium on VLSI Circuits. New York, USA: IEEE Press, 2019: C262-C263. [3] BABA T, TAMANUKI T, ITO H, et al. Silicon photonics FMCW LiDAR chip with a slow-light grating beam scanner[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(5): 1-8. [4] ABIRI B, FATEMI R, HAJIMIRI A. A 1-D heterodyne lens-free optical phased array camera with reference phase shifting[J]. IEEE Photonics Journal, 2018, 10(5): 1-12. [5] BYRD M J, POULTON C V, KHANDAKER M, et al. Free-space communication links with transmitting and receiving integrated optical phased arrays[C]//Frontiers in Optics/Laser Science. New York, USA: IEEE Press, 2018: FTu4E. 1. [6] CLEVENSON H A, SPECTOR S J, BENNEY L, et al. Incoherent light imaging using an optical phased array[J]. Applied Physics Le-tters, 2020, 116(3): 031105. doi: 10.1063/1.5130697 [7] BHANDARI B, WANG ChX, GWON J Y, et al. Integrated optical phased array enabling wavelength-tuned line scanning[C]//2022 27th Opto-Electronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC). New York, USA: IEEE Press, 2022: 1-3. [8] KIM J Y, YOON J, KIM J, et al. Demonstration of beam steering using a passive silica optical phased array with wavelength tuning[J]. Optics Letters, 2022, 47(19): 4857-4860. doi: 10.1364/OL.470667 [9] YU L, WANG P, MA P, et al. Two-dimensional beam scanning of passive optical phased array based on silicon nitride delay line[J]. Journal of Lightwave Technology, 2023, 41(9): 2756-2764. [10] MISUGI Y, OKAYAMA H, KITA T. Demonstration of 2D beam steering using large-scale passive optical phased array enabled by multimode waveguides with reduced phase error[J]. Applied Phy-sics Express, 2022, 15(10): 102002. doi: 10.35848/1882-0786/ac9033 [11] MISUGI Y, OKAYAMA H, KITA T. Compact and low power-consumption solid-state two-dimensional beam scanner integrating a pa-ssive optical phased array and hybrid wavelength-tunable laser diode[J]. Journal of Lightwave Technology, 2023, 41(11): 3505-3512. doi: 10.1109/JLT.2023.3244847 [12] POULTON C V, BYRD M J, RAVAL M, et al. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths[J]. Optics Letters, 2017, 42(1): 21-24. doi: 10.1364/OL.42.000021 [13] IM C S, BHANDARI B, LEE K P, et al. Silicon nitride optical phased array based on a grating antenna enabling wavelength-tuned beam steering[J]. Optics Express, 2020, 28(3): 3270-3279. doi: 10.1364/OE.383304 [14] LI Y, CHEN B, NA Q, et al. Wide-steering-angle high-resolution optical phased array[J]. Photonics Research, 2021, 9(12): 2511-2518. doi: 10.1364/PRJ.437846 [15] WANG Q, WANG S, JIA L, et al. Silicon nitride assisted 1×64 optical phased array based on a SOI platform[J]. Optics Express, 2021, 29(7): 10509-10517. doi: 10.1364/OE.420921 [16] LUO G, YU L, MA P, et al. A large-scale passive optical phase array with 1024 channels[J]. IEEE Photonics Technology Letters, 2023, 35(17): 927-930. doi: 10.1109/LPT.2023.3289231 [17] WANG P F, LUO G Zh, XU H Y, et al. Design and fabrication of a SiN-Si dual-layer optical phased array chip[J]. Photonics Research, 2020, 8(6): 06000912. [18] LUO G, WANG P, MA J, et al. Demonstration of 128-channel optical phased array with large scanning range[J]. IEEE Photonics Journal, 2021, 13(3): 1-10. [19] LIU Y, HU H. Silicon optical phased array with a 180-degree field of view for 2D optical beam steering[J]. Optica, 2022, 9(8): 903-907. doi: 10.1364/OPTICA.458642 [20] TYLER N A, FOWLER D, MALHOUITRE S, et al. SiN integrated optical phased arrays for two-dimensional beam steering at a single near-infrared wavelength[J]. Optics Express, 2019, 27(4): 5851-5858. doi: 10.1364/OE.27.005851 [21] CHUL S M, MOHANTY A, WATSON K, et al. Chip-scale blue light phased array[J]. Optics Letters, 2020, 45(7): 1934-1937. doi: 10.1364/OL.385201 [22] HSU C P, LI B, SOLANO-RIVAS B, et al. A review and perspective on optical phased array for automotive LiDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(1): 1-16. [23] SHANG K, QIN C, ZHANG Y, et al. Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous field-of-view[J]. Optics Express, 2017, 25(17): 19655. doi: 10.1364/OE.25.019655 [24] RAVAL M, POULTON C V, WATTS M R. Unidirectional waveguide grating antennas with uniform emission for optical phased arrays[J]. Optics Letters, 2017, 42(13): 2563-2566. doi: 10.1364/OL.42.002563 [25] YU L, MA P, LUO G, et al. Adoption of large aperture chirped grating antennas in optical phase array for long distance ranging[J]. Optics Express, 2022, 30(15): 28112-28120. doi: 10.1364/OE.464358 [26] ZHANG L, WANG Y, HOU Y, et al. Uniform rectangular distribution of far-field intensity by optical phased array[J]. Optics Communications, 2022, 507: 127661. doi: 10.1016/j.optcom.2021.127661 [27] KOMLJENOVIC T, HELKEY R, COLDREN L, et al. Sparse aperiodic arrays for optical beam forming and LiDAR[J]. Optics Express, 2017, 25(3): 2511-2528. doi: 10.1364/OE.25.002511 [28] FATEMI R, KHACHATURIAN A, HAJIMIRI A. A nonuniform sparse 2-D large-FOV optical phased array with a low-power PWM drive[J]. IEEE Journal of Solid-State Circuits, 2019, 54(5): 1200-1215. doi: 10.1109/JSSC.2019.2896767 [29] POLKOO S S, RENSHAW C K. Hybrid imaging-based beam steering system using a sparse photonic integrated circuit outcoupling array[C]//Conference on Lasers and Electro-Optics. New York, USA: IEEE Press, 2020: JTh2B. 25. [30] POULTON C V, BYRD M J, RUSSO P, et al. Coherent LiDAR with an 8, 192-element optical phased array and driving laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(5): 6100508. [31] SAYYAH K, SARKISSIAN R, PATTERSON P, et al. Fully integrated FMCW LiDAR optical engine on a single silicon chip[J]. Journal of Lightwave Technology, 2022, 40(9): 2763-2772. doi: 10.1109/JLT.2022.3145711 [32] WANG P F, LUO G Z, YU H Y, et al. Improving the performance of optical antenna for optical phased arrays through high-contrast grating structure on SOI substrate[J]. Optics Express, 2019, 27(3): 2703-2712. doi: 10.1364/OE.27.002703 [33] HAN K, YURLOV V, YU N E. Highly directional waveguide grating antenna for optical phased array[J]. Current Applied Physics, 2018, 18(7): 824-828. doi: 10.1016/j.cap.2018.04.004 [34] 郑伟, 王超, 杨文丽, 等. 基于色散光学的光波束形成网络[J]. 激光技术, 2022, 46(2): 188-192. doi: 10.7510/jgjs.issn.1001-3806.2022.02.007 ZHENG W, WANG Ch, YANG W L, et al. An optical beamforming network based on dispersing optics[J]. Laser Technology, 2022, 46(2): 188-192(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2022.02.007