高级检索

基于4H-SiC APD单光子探测的主动淬灭电路研究

陶晓强, 李天义, 徐尉宗, 周东, 任芳芳, 陆海

陶晓强, 李天义, 徐尉宗, 周东, 任芳芳, 陆海. 基于4H-SiC APD单光子探测的主动淬灭电路研究[J]. 激光技术, 2024, 48(6): 809-815. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.005
引用本文: 陶晓强, 李天义, 徐尉宗, 周东, 任芳芳, 陆海. 基于4H-SiC APD单光子探测的主动淬灭电路研究[J]. 激光技术, 2024, 48(6): 809-815. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.005
TAO Xiaoqiang, LI Tianyi, XU Weizong, ZHOU Dong, REN Fangfang, LU Hai. Research on active quenching circuit based on single-photon detection of 4H-SiC APD[J]. LASER TECHNOLOGY, 2024, 48(6): 809-815. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.005
Citation: TAO Xiaoqiang, LI Tianyi, XU Weizong, ZHOU Dong, REN Fangfang, LU Hai. Research on active quenching circuit based on single-photon detection of 4H-SiC APD[J]. LASER TECHNOLOGY, 2024, 48(6): 809-815. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.005

基于4H-SiC APD单光子探测的主动淬灭电路研究

基金项目: 

国家自然科学基金资助项目 U2141241

国家自然科学基金资助项目 U21A20496

国家自然科学基金资助项目 61921005

详细信息
    通讯作者:

    陆海, hailu@nju.edu.cn

  • 中图分类号: TN23

Research on active quenching circuit based on single-photon detection of 4H-SiC APD

  • 摘要: 为了对比不同类型淬灭电路对4H-SiC雪崩光电二极管(APD)探测性能的影响,采用被动淬灭电路(PQC)和主动淬灭电路(AQC),对两种类型SiC紫外APD进行了单光子探测实验,发现在PQC较长死区时间内,会频发后脉冲现象,导致APD的暗计数率(DCR)较高,从而降低器件的信噪比;对APD后脉冲概率的时间分布进行了研究,并进一步对AQC在更高器件过偏压下单光子探测中出现的问题进行了分析,提出了电路改进方案。结果表明,通过将AQC死区时间调整至45 ns,在相同单光子探测效率下,可将器件DCR减少至原先水平的1/4;通过有效抑制后脉冲和加快APD恢复速度,AQC可使器件展现出更加优越的探测性能。此研究为SiC APD在单光子探测中的应用提供了一定的参考。
    Abstract: In order to compare the effects of different types of quenching circuits on the detection performance of 4H-SiC avalanche photodiodes (APD), single-photon detection experiments were conducted on two types of SiC ultraviolet APD by using passive quenching circuits (PQC) and active quenching circuits (AQC). It was found that during a long dead time in PQC, post pulse phenomena occur frequently, resulting in a higher dark counting rate (DCR) of APD, thereby reducing the signal-to-noise ratio of the device. A study was conducted on the time distribution of pulse probability after APD, and further analysis was conducted on the problems encountered by AQC in single-photon detection under higher device bias. A circuit improvement plan was proposed. The research results indicate that by adjusting the dead time of AQC to 45 ns, the device DCR can be reduced to 1/4 of the original level under the same single-photon detection efficiency. By effectively suppressing post pulse and accelerating APD recovery speed, AQC can enable the device to exhibit superior detection performance. This study provides a certain reference for the application of SiC APD in single-photon detection.
  • 图  1   被动淬灭电路示意图

    Figure  1.   Schematic of a passive quenching circuit

    图  2   主动淬灭电路示意图

    Figure  2.   Schematic of an active quenching circuit

    图  3   两种SiC APD横截面示意图

    Figure  3.   Cross-sectional schematics of two types of SiC APD

    图  4   两种SiC APD光电流、暗电流以及增益-电压曲线

    Figure  4.   Photon current, dark current and gain-voltage characteristic of two types of SiC APD

    图  5   两种SiC APD被动淬灭模式下DCR和SPDE过偏压特性曲线

    Figure  5.   DCR and SPDE overbias characteristics of two types of SiC APD measured with PQC

    图  6   两种SiC APD的后脉冲概率随时间分布曲线

    Figure  6.   After-pulse probability vs. timecurves of two types of SiC APD

    图  7   基于PQC和AQC的SiC APD DCR-SPDE特性对比

    Figure  7.   Comparison of DCR-SPDE characteristics of SiC APD based on PQC and AQC

    图  8   SiC APD单光子探测中AQC电路图和输出波形图

    Figure  8.   AQC diagram and output waveform of single-photon detection based on SiC APD

  • [1]

    CAMPBELL J C. Evolution of low-noise avalanche photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 28(2): 1-11.

    [2]

    HAYDEN O, AGARWAL R, LIEBER C M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection[J]. Nature Materials, 2006, 5(5): 352-356. DOI: 10.1038/nmat1635

    [3]

    ITZLER M A, JIANG X, ENTWISTLE M, et al. Advances in InGaAsP-based avalanche diode single photon detectors[J]. Journal of Modern Optics, 2011, 58(3/4): 174-200.

    [4]

    ZHU H, CHEN X, CAI J, et al. 4H-SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain[J]. Solid-State Electronics, 2009, 53(1): 7-10. DOI: 10.1016/j.sse.2008.09.002

    [5]

    BAI X, GUO X, MCINTOSH D C, et al. High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes[J]. IEEE Journal of Quantum Electronics, 2007, 43(12): 1159-1162. DOI: 10.1109/JQE.2007.905031

    [6]

    BAE I H, PARK S, HONG K S, et al. Characteristics measurement in a deep UV single photon detector based on a TE-cooled 4H-SiC APD[J]. IEEE Photonics Journal, 2023, 15(1): 1-6.

    [7] 程碑彤, 代千, 谢修敏, 等. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601-609. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.004

    CHENG B T, DAI Q, XIE X M, et al. Research progress of single-photon detectors[J]. Laser Technology, 2022, 46(5): 601-609(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.05.004

    [8]

    SU L L, ZHOU D, LIU Q, et al. Effect of a single threading dislocation on electrical and single photon detection characteristics of 4H-SiC ultraviolet avalanche photodiodes[J]. Chinese Physics Letters, 2020, 37(6): 068502. DOI: 10.1088/0256-307X/37/6/068502

    [9]

    DONG H, ZHANG H, SU L, et al. After-pulse characterizations of Geiger-mode 4H-SiC avalanche photodiodes[J]. IEEE Photonics Technology Letters, 2020, 32(12): 706-709. DOI: 10.1109/LPT.2020.2992924

    [10]

    LIU M, BAI X, HU C, et al. Low dark count rate and high single-photon detection efficiency avalanche photodiode in Geiger-mode operation[J]. IEEE Photonics Technology Letters, 2007, 19(6): 378-380. DOI: 10.1109/LPT.2007.891939

    [11]

    YANG S, ZHOU D, CAI X, et al. Analysis of dark count mechanisms of 4H-SiC ultraviolet avalanche photodiodes working in Geiger mode[J]. IEEE Transactions on Electron Devices, 2017, 64(11): 4532-4539. DOI: 10.1109/TED.2017.2753839

    [12]

    SU L, CAI X, LU H, et al. Spatial non-uniform hot carrier luminescence from 4H-SiC PIN avalanche photodiodes[J]. IEEE Photonics Technology Letters, 2019, 31(6): 447-450. DOI: 10.1109/LPT.2019.2897742

    [13]

    ZHOU X, TAN X, LV Y, et al. Impact of resistance on the performance of ultraviolet 4H-SiC avalanche photodiodes[J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3250-3255. DOI: 10.1109/TED.2020.3004791

    [14]

    DU Y, RETIERE F. After-pulsing and cross-talk in multi-pixel photon counters[J]. Nuclear Instruments and Methods in Physics Research, 2008, A596(3): 396-401.

    [15]

    WANG Y, LV Y, WANG Y, et al. Noise characterization of Geiger-mode 4H-SiC avalanche photodiodes for ultraviolet single-photon detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 24(2): 1-5.

    [16]

    CAI X, WU C, LU H, et al. Single photon counting spatial uniformity of 4H-SiC APD characterized by SNOM-based mapping system[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1603-1606. DOI: 10.1109/LPT.2017.2735625

    [17]

    LIU F, WANG J, WANG D, et al. Photo-electric response of 4H-SiC APDs at high-level incident flux[J]. Results in Physics, 2023, 50: 106608. DOI: 10.1016/j.rinp.2023.106608

    [18]

    COVA S, GHIONI M, LACAITA A, et al. Avalanche photodiodes and quenching circuits for single-photon detection[J]. Applied optics, 1996, 35(12): 1956-1976. DOI: 10.1364/AO.35.001956

    [19]

    LI T, TAO X, XU W, et al. Geiger-mode operation 4H-SiC recessed-window avalanche photodiodes fabricated by N ion implantation[J]. IEEE Photonics Technology Letters, 2023, 35(14): 761-764. DOI: 10.1109/LPT.2023.3276907

    [20]

    NIPOTI R, AYEDH H M, SVENSSON B G. Defects related to electrical doping of 4H-SiC by ion implantation[J]. Materials Science in Semiconductor Processing, 2018, 78: 13-21. DOI: 10.1016/j.mssp.2017.10.021

    [21]

    SON W Y, SHIN M C, SCHWEITZ M, et al. Al implantation and post annealing effects in N-type 4H-SiC[J]. Journal of Nanoelectronics and Optoelectronics, 2020, 15(7): 777-782. DOI: 10.1166/jno.2020.2818

    [22]

    LIU L, LV W, LIU J, et al. Performance of active-quenching SPAD array based on the tri-state gates of FPGA and packaged with bare chip stacking[J]. Sensors, 2023, 23(9): 4314. DOI: 10.3390/s23094314

    [23]

    XING W, HU A, ZHOU X, et al. Active quenching and reset circuit for Geiger mode avalanche photodiodes[C]//2023 5th International Conference on Electronic Engineering and Informatics (EEI). New York, USA: IEEE Press, 2023: 15-18.

    [24]

    DENG S, GORDON D, MORRISON A P. A Geiger-mode APD photon counting system with adjustable dead-time and interchangeable detector[J]. IEEE Photonics Technology Letters, 2015, 28(1): 99-102.

    [25]

    YUAN F, LU X L, JING L, et al. A novel high-speed photon counting system with programmed dead time[C]//2019 IEEE 4th Optoelectronics Global Conference (OGC). New York, USA: IEEE Press, 2019: 85-88.

图(8)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31
  • 修回日期:  2024-02-25
  • 发布日期:  2024-11-24

目录

    /

    返回文章
    返回