Research on active quenching circuit based on single-photon detection of 4H-SiC APD
-
摘要: 为了对比不同类型淬灭电路对4H-SiC雪崩光电二极管(APD)探测性能的影响,采用被动淬灭电路(PQC)和主动淬灭电路(AQC),对两种类型SiC紫外APD进行了单光子探测实验,发现在PQC较长死区时间内,会频发后脉冲现象,导致APD的暗计数率(DCR)较高,从而降低器件的信噪比;对APD后脉冲概率的时间分布进行了研究,并进一步对AQC在更高器件过偏压下单光子探测中出现的问题进行了分析,提出了电路改进方案。结果表明,通过将AQC死区时间调整至45 ns,在相同单光子探测效率下,可将器件DCR减少至原先水平的1/4;通过有效抑制后脉冲和加快APD恢复速度,AQC可使器件展现出更加优越的探测性能。此研究为SiC APD在单光子探测中的应用提供了一定的参考。Abstract: In order to compare the effects of different types of quenching circuits on the detection performance of 4H-SiC avalanche photodiodes (APD), single-photon detection experiments were conducted on two types of SiC ultraviolet APD by using passive quenching circuits (PQC) and active quenching circuits (AQC). It was found that during a long dead time in PQC, post pulse phenomena occur frequently, resulting in a higher dark counting rate (DCR) of APD, thereby reducing the signal-to-noise ratio of the device. A study was conducted on the time distribution of pulse probability after APD, and further analysis was conducted on the problems encountered by AQC in single-photon detection under higher device bias. A circuit improvement plan was proposed. The research results indicate that by adjusting the dead time of AQC to 45 ns, the device DCR can be reduced to 1/4 of the original level under the same single-photon detection efficiency. By effectively suppressing post pulse and accelerating APD recovery speed, AQC can enable the device to exhibit superior detection performance. This study provides a certain reference for the application of SiC APD in single-photon detection.
-
-
-
[1] CAMPBELL J C. Evolution of low-noise avalanche photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 28(2): 1-11.
[2] HAYDEN O, AGARWAL R, LIEBER C M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection[J]. Nature Materials, 2006, 5(5): 352-356. DOI: 10.1038/nmat1635
[3] ITZLER M A, JIANG X, ENTWISTLE M, et al. Advances in InGaAsP-based avalanche diode single photon detectors[J]. Journal of Modern Optics, 2011, 58(3/4): 174-200.
[4] ZHU H, CHEN X, CAI J, et al. 4H-SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain[J]. Solid-State Electronics, 2009, 53(1): 7-10. DOI: 10.1016/j.sse.2008.09.002
[5] BAI X, GUO X, MCINTOSH D C, et al. High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes[J]. IEEE Journal of Quantum Electronics, 2007, 43(12): 1159-1162. DOI: 10.1109/JQE.2007.905031
[6] BAE I H, PARK S, HONG K S, et al. Characteristics measurement in a deep UV single photon detector based on a TE-cooled 4H-SiC APD[J]. IEEE Photonics Journal, 2023, 15(1): 1-6.
[7] 程碑彤, 代千, 谢修敏, 等. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601-609. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.004 CHENG B T, DAI Q, XIE X M, et al. Research progress of single-photon detectors[J]. Laser Technology, 2022, 46(5): 601-609(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.05.004
[8] SU L L, ZHOU D, LIU Q, et al. Effect of a single threading dislocation on electrical and single photon detection characteristics of 4H-SiC ultraviolet avalanche photodiodes[J]. Chinese Physics Letters, 2020, 37(6): 068502. DOI: 10.1088/0256-307X/37/6/068502
[9] DONG H, ZHANG H, SU L, et al. After-pulse characterizations of Geiger-mode 4H-SiC avalanche photodiodes[J]. IEEE Photonics Technology Letters, 2020, 32(12): 706-709. DOI: 10.1109/LPT.2020.2992924
[10] LIU M, BAI X, HU C, et al. Low dark count rate and high single-photon detection efficiency avalanche photodiode in Geiger-mode operation[J]. IEEE Photonics Technology Letters, 2007, 19(6): 378-380. DOI: 10.1109/LPT.2007.891939
[11] YANG S, ZHOU D, CAI X, et al. Analysis of dark count mechanisms of 4H-SiC ultraviolet avalanche photodiodes working in Geiger mode[J]. IEEE Transactions on Electron Devices, 2017, 64(11): 4532-4539. DOI: 10.1109/TED.2017.2753839
[12] SU L, CAI X, LU H, et al. Spatial non-uniform hot carrier luminescence from 4H-SiC PIN avalanche photodiodes[J]. IEEE Photonics Technology Letters, 2019, 31(6): 447-450. DOI: 10.1109/LPT.2019.2897742
[13] ZHOU X, TAN X, LV Y, et al. Impact of resistance on the performance of ultraviolet 4H-SiC avalanche photodiodes[J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3250-3255. DOI: 10.1109/TED.2020.3004791
[14] DU Y, RETIERE F. After-pulsing and cross-talk in multi-pixel photon counters[J]. Nuclear Instruments and Methods in Physics Research, 2008, A596(3): 396-401.
[15] WANG Y, LV Y, WANG Y, et al. Noise characterization of Geiger-mode 4H-SiC avalanche photodiodes for ultraviolet single-photon detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 24(2): 1-5.
[16] CAI X, WU C, LU H, et al. Single photon counting spatial uniformity of 4H-SiC APD characterized by SNOM-based mapping system[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1603-1606. DOI: 10.1109/LPT.2017.2735625
[17] LIU F, WANG J, WANG D, et al. Photo-electric response of 4H-SiC APDs at high-level incident flux[J]. Results in Physics, 2023, 50: 106608. DOI: 10.1016/j.rinp.2023.106608
[18] COVA S, GHIONI M, LACAITA A, et al. Avalanche photodiodes and quenching circuits for single-photon detection[J]. Applied optics, 1996, 35(12): 1956-1976. DOI: 10.1364/AO.35.001956
[19] LI T, TAO X, XU W, et al. Geiger-mode operation 4H-SiC recessed-window avalanche photodiodes fabricated by N ion implantation[J]. IEEE Photonics Technology Letters, 2023, 35(14): 761-764. DOI: 10.1109/LPT.2023.3276907
[20] NIPOTI R, AYEDH H M, SVENSSON B G. Defects related to electrical doping of 4H-SiC by ion implantation[J]. Materials Science in Semiconductor Processing, 2018, 78: 13-21. DOI: 10.1016/j.mssp.2017.10.021
[21] SON W Y, SHIN M C, SCHWEITZ M, et al. Al implantation and post annealing effects in N-type 4H-SiC[J]. Journal of Nanoelectronics and Optoelectronics, 2020, 15(7): 777-782. DOI: 10.1166/jno.2020.2818
[22] LIU L, LV W, LIU J, et al. Performance of active-quenching SPAD array based on the tri-state gates of FPGA and packaged with bare chip stacking[J]. Sensors, 2023, 23(9): 4314. DOI: 10.3390/s23094314
[23] XING W, HU A, ZHOU X, et al. Active quenching and reset circuit for Geiger mode avalanche photodiodes[C]//2023 5th International Conference on Electronic Engineering and Informatics (EEI). New York, USA: IEEE Press, 2023: 15-18.
[24] DENG S, GORDON D, MORRISON A P. A Geiger-mode APD photon counting system with adjustable dead-time and interchangeable detector[J]. IEEE Photonics Technology Letters, 2015, 28(1): 99-102.
[25] YUAN F, LU X L, JING L, et al. A novel high-speed photon counting system with programmed dead time[C]//2019 IEEE 4th Optoelectronics Global Conference (OGC). New York, USA: IEEE Press, 2019: 85-88.