Research progress on GaAs-based near-infrared tapered semiconductor lasers
-
摘要: 基于GaAs衬底的近红外波段半导体激光器已经取得了显著的发展。在大功率研究方面,因为可以同时实现高功率、高光束质量的优良特性,主振荡功率放大器结构的锥形半导体激光器成为了广受关注的研究热点。归纳了近年来国内外关于GaAs基锥形激光器的代表性研究成果,讨论了激光器器件结构设计(包括脊形区、锥形区以及布喇格光栅等的设计)和外延层优化在理论研究及实验方面取得的进展;围绕高功率、高光束质量、高亮度、窄线宽应用需求,总结整理了锥形激光器的研究进展与性能特征;对本团队关于锥形激光器的研究工作进行了简要介绍;并展望了锥形激光器未来的发展方向。Abstract: Semiconductor lasers in the near-infrared wavelength range based on GaAs substrates have made significant advancements. In the realm of high-power research, the tapered semiconductor lasers with a master-oscillator power-amplifier structure have garnered widespread attention due to its excellent characteristics, allowing for the simultaneous achievement of high power and high beam quality. The representative research results on GaAs-based tapered lasers at home and abroad in recent years were summarized, and the progresses in theoretical studies and experiments on the design of laser device structures (including the design of ridge and tapered regions as well as Bragg gratings) and the optimization of epitaxial layers were discussed. Focusing on the demands for high power, high beam quality, high brightness, and narrow linewidth applications, the research progress and performance characteristics of tapered lasers were summarized. The research work of the tapered lasers was briefly introduced. Furthermore, an outlook on the future development directions of tapered semiconductor lasers has been provided.
-
Keywords:
- lasers /
- tapered diode laser /
- structure design /
- optimization of epitaxial layer
-
引言
垂直腔半导体光器件具备体积小、功耗低、易于集成等优点,历来受到人们的重视[1-5]。其中,垂直腔半导体光放大器(vertical cavity semiconductor optical amplifier,VCSOA)可以看作是偏置在阈值电流以下(但非常接近)工作的激光器,它可以对入射光进行法布里-珀罗(Fabry-Perot, F-P)放大。前期的研究工作表明,作为光放大器,入射端面反射率对VCSOA的增益以及饱和输出特性有重要影响;应用于慢光时,VCSOA的时延带宽积也与入射端面反射率密切相关。因此在VCSOA设计制作中,准确控制其端面反射率,对于优化VCSOA在不同应用中的性能,是至关重要的[6-10]。
VCSOA中由多层高、低折射率交替的膜堆构成的分布布喇格反射器(distributed Bragg reflector,DBR)来提供光反馈,DBR膜堆结构决定了它的端面反射率。正入射条件下,DBR的反射率是易于计算的。但是,VCSOA腔长很短,入射到DBR上的很大一部分光是不满足正入射条件的,这样正入射条件下计算出的DBR反射率必然有偏差。所以,考虑到VCSOA内部光场分布特点,本文中将结合角谱理论和传输矩阵法来计算分析VCSOA中DBR的等效反射率。从VCSOA内部发出的光,入射到DBR上的角频谱近似服从高斯分布,首先采用传输矩阵法计算各个角频谱分量的等效反射系数,然后对反射的角频谱进行傅里叶逆变换得到反射光场分布。入射光场和反射光场一旦确定, 就可以利用它们之间的耦合关系计算出等效反射率。
计算结果表明,与只考虑正入射情况相比,修正的DBR等效反射率小了2%~4%。对于激光器而言,因为制作时可以增加DBR膜堆的层数以确保高的反射率,降低器件阈值电流,所以正入射计算误差并未引起人们的重视。但是对于放大器而言,出发点不再是降低器件阈值电流,而需要根据不同应用需求,优化设计端面反射率的大小,这样,准确计算膜堆层数对DBR等效反射率的影响就成为前提条件,这正是作者工作的动机和出发点[11-16]。
1. 理论模型
1.1 反射率的计算
VCSOA的微腔结构的形式是用高折射率层与有源区相邻,再接以低折射率层组成一个HL周期,两侧分别连接m个和n个周期,最后再接一个H层结束,形成(HL)(HL)…(HL)H结构,这种结构简称为HLH结构[17],如图 1所示。
根据光学薄膜原理,多层介质膜第j层的特征矩阵Mj为[18]:
{\mathit{\boldsymbol{M}}_j} = \left[ \begin{array}{l} \cos {\delta _j}\;\;\;\frac{{\rm{i}}}{{{\eta _j}}}\sin {\delta _j}\\ {\rm{i}}{\eta _j}\sin {\delta _j}\;\;\cos {\delta _j} \end{array} \right] (1) 式中,λ是光波波长,dj为该层厚度,nj为该层折射率,θj为入射角度,i为虚数单位, δj=2π/(λnjdjcosθj),ηj对于p偏振时为ηj=nj/cosθj,对于s偏振是ηj=njcosθj。本文中所用的薄膜厚度为1/4波长, 即dj=λ/4。整个DBR的传输矩阵M为:
\mathit{\boldsymbol{M = }}{\left( {{\mathit{\boldsymbol{M}}_{\rm{H}}}{\mathit{\boldsymbol{M}}_{\rm{L}}}} \right)^m}{\mathit{\boldsymbol{M}}_{\rm{H}}} (2) 式中,m表示DBR结构周期。
\left[ \begin{array}{l} \mathit{\boldsymbol{B}}\\ \mathit{\boldsymbol{C}} \end{array} \right] = \mathit{\boldsymbol{M}}\left[ \begin{array}{l} \;\;1\\ {\eta _{k + 1}} \end{array} \right] (3) 式中,k+1层为衬底层,B和C分别为膜层和基板的组合特征矩阵。
于是可以得到DBR多层介质膜的等效导纳Y=C/B, 则膜系的Fresnel反射系数r和反射率R为:
r = \frac{{{\eta _0} - Y}}{{{\eta _0} + Y}} (4) R = \left( {\frac{{{\eta _0} - Y}}{{{\eta _0} + Y}}} \right){\left( {\frac{{{\eta _0} - Y}}{{{\eta _0} + Y}}} \right)^*} (5) 式中,*表示共轭。利用这种方法,可以得到注入光的DBR等效反射率。
在VCSOA中有源腔内,光以一定的角度θ0入射到DBR面上[17], 如图 2所示。
入射场角频谱Fi(s)可以认为服从标准高斯分布:
{F_{\rm{i}}}\left( s \right) = A\exp \left[ { - \frac{1}{2}{{\left( {\frac{s}{{{\sigma _0}}}} \right)}^2}} \right] (6) 式中,A为高斯函数的幅值,s=sinθ0,θ0是入射角。该分布的半峰全宽(full width at half maxima,FWHM)σ定义为幅度降低一半时对应的s,即{s_{{\rm{FWHM}}}} = \sqrt {2\ln 2} {\sigma _0} =1.1774σ0, σ0为正态分布的方差。则对应θ0的θFWHM=2arcsin(sFHWM)= 2arcsin(1.1774σ0)。
对(6)式进行傅里叶逆变换, 得到入射光场分布:
{E_{\rm{i}}}\left( x \right) = A\frac{1}{{\sqrt {2{\rm{ \mathit{ π} }}} }}{\sigma _0}\exp \left( { - \frac{1}{2}{\sigma _0}^2{x^2}} \right) (7) 根据菲涅耳反射定律,反射场的角频谱Fref(s)为:
{F_{{\rm{ref}}}}\left( s \right) = r\left( {{\theta _0}} \right){F_{\rm{i}}}\left( s \right) (8) 式中,r(θ0)为菲涅耳反射系数。
对Fref(s)进行傅里叶逆变换, 得到z=0处的反射场Eref(x)。
反射场Eref(x)和入射场Ei(x)相干叠加,耦合系数的平方的比就是反射率R[19-20]:
R = \frac{{{{\left| {\smallint _{ - \infty }^\infty {E_{\rm{i}}}\left( x \right){E_{{\rm{ref}}}}\left( x \right){\rm{d}}\mathit{x}} \right|}^2}}}{{{{\left| {\smallint _{ - \infty }^\infty E_{\rm{i}}^2\left( x \right){\rm{d}}x} \right|}^2}}} (9) 1.2 半值谱宽θFHWM的判定
光波在DBR处被反射,同时一部分向自由空间输出, 如图 3所示。
输出光场的角频谱Fo(s)为:
{F_{\rm{o}}}\left( s \right) = t\left( {{\theta _0}} \right){F_{\rm{i}}}\left( s \right) (10) 式中,t(θ0)为菲涅耳透射系数。
从参考文献[16]中知道,一般半导体激光器的出光孔径为2μm~17μm时,远场扩散角度的半值谱宽为30°~7°。而对于垂直腔激光放大器,出光孔径更小,为1μm左右。远场扩散角的半值谱宽为40°左右。图 4中给出了远场扩散角的半值谱宽为38°时的内外角频谱分布图,纵坐标为相对值。由点线模拟结果可以知道,此时腔内角频谱Fi(s)的半值谱宽θFWHM=12°,σ0=0.09。拟合出来的结果与韩国公司生产的型号为RayCan RC32xxx1-Fd的光器件完全一致。
2. 分析与计算
表 1为各膜层折射率。图 5中给出了在正入射的情况下,利用传输矩阵法计算出的GaAs/AlAs结构的DBR反射率随周期数变化曲线。从图中可以看出, 随着DBR结构周期数的增加,腔反射率逐渐增加。VCSOA的一个DBR作为出光面,既要保证有一定的腔反射率用于形成谐振,又要使激射波长有一定的腔透射率用于形成激光输出;而另一个面作为反射面,主要考虑增大反射率从而使腔内有更高的增益。所以一般VCSOA的双层DBR结构并不对称。当结构周期大于25时,中心激射波长处的反射率接近1,并且基本已经不再随周期增大而改变,所以VCSOA反射面的DBR周期一般选取为25左右。而出光面的周期则既要考虑谐振,又要考虑激射波长,因而需要适当地选取。通常此类VCSOA产品出光面的DBR周期选为13。
Table 1. Refractive indexVCSOA refractive index DBR(GaAs) 3.45 DBR(AlAs) 2.89 active area (InAs0.5P0.5) 3.36 active area (In0.8Ga0.2P) 3.30 active area (InP) 3.17 base area (GaAs) 3.45 图 6中给出了考虑光场分布时,采用角频谱分析法计算出的反射率随着DBR结构周期的变化关系曲线。从计算结果可以看出,VCSOA中DBR等效反射率和光场分布有一定的关系。在一定的光场分布下,等效反射率的变化趋势和正入射时利用传输矩阵法的结果是一致的。等效反射率都随着结构周期增加而增加,且当DBR结构周期大于25时基本不再增长。在以上的分析中,作者已经提到本文中VCSOA中入射到DBR上角频谱分布的半值谱宽θFWHM一般在12°左右。图 7中给出了两者的对比情况。可以看出,当腔内角频谱分布的半值谱宽θFWHM为12°时,在同一结构周期下,VCSOA中DBR的等效放射率要比直接利用正入射的模型计算小2%~4%。这在分析VCSOA工作特性时是至关重要的。图 6中还给出了θFWHM为8°和16°时,等效反射率随结构周期的变化情况。
图 8中给出了DBR等效反射率随光场分布的关系。在同一结构周期下,等效反射率在正入射θFWHM=0°时最大,并随着θFWHM变大而逐渐降低。从图中看出, 当光场分布比较集中(θFWHM < 8°)时,等效反射率和正入射时相当。(结构周期为13时,等效反射率为0.985)。此时的光相当于正入射到DBR上,光场失谐不大,对等效反射率影响较小。随着半值谱宽增加,入射场和反射场的失谐程度越大,等效反射率越低。考虑光场分布的影响后,同一结构周期的等效反射率降低了2%~4%。当周期为13、且θFWHM=12°时,等效反射率R=0.97。当腔内光场分布更不集中的情况下,等效反射率更低。
3. 结论
本文中利用角频谱分析法,结合传输矩阵计算了VCSOA中DBR的等效反射率。等效反射率随着结构周期增加而变大,但是当周期大于25时基本不再变化。分析了等效反射率和光场分布的关系。在同一结构周期下,考虑光场分布时的等效反射率和正入射变化趋势相同,但是要小2%~4%。等效反射率随着半值谱宽θFWHM增大而减小。这为准确计算膜堆层数对DBR等效反射率的影响提供了理论指导,可进一步优化VCSOA的工作性能,例如降低阈值、优化增益带宽积等。
-
图 18 锥形激光器光谱测量结果[54]
a—固定锥形区电流下,改变脊形区注入电流 b—固定脊形区电流下,改变锥形区注入电流
Figure 18. Measured spectra of the tapered laser diode[54]
a—variafion of injection current in the ridge region under the fixed current in the tapered region b—variation of injection current in the tapered region under the fixed current in the ridge region
表 1 FBH外延设计进展
Table 1 Progress in epitaxial design of FBH
时间 波长λ/nm 外延结构 外延参数 性能参数 参考文献 有源区 波导层 2005 980 SQW 光腔:SLOC
厚度:3.6 μm
材料:Al0.45Ga0.55Asηi>95%,
αi≈ 1.4 cm-1Pmax=14 W,
M2<2 @ 7.7 W[37] 2008 976 SQW 厚度:1.06 μm
材料:Al0.20Ga0.80Asηi> 97%,
αi<0.5 cm-1Pmax=15 W,
M2=2.3 @ 5.4 W[38] 2008 979 DQW 光腔:ASLOC
厚度:4.8 μm
材料:AlGaAs转换效率:44% Pmax=12 W,
M2=1.1 @ 11.4 W[39] 2016 1029 TQW 光腔:ASLOC
厚度:4.8 μm
材料:Al0.25Ga0.75As
Γg0=19 cm-1,
ηi=1.0,
αi≈ 1.5 cm-1Pmax=12.7 W,
M2=1.1 @ 10.5 W,
谱宽:17 pm[30] 2017 1022 TQW 光腔:ASLOC
厚度:4.8 μm
材料:Al0.25Ga0.75As
Γg0=23 cm-1,
ηi≈0.99,
αi≈ 0.8 cm-1Pmax=15.5 W [40] 表 2 锥形激光器应用特性及研究进展
Table 2 Application characteristics and research progress of the tapered laser
应用特性 年份 λ/nm 性能参数 参考文献 高功率 2018 980 功率/W 7.3 [43] 2019 1060 9.5 [33] 2021 975 7 [47] 2022 1015 10.3 [48] 窄线宽 2019 996 谱宽/pm 2.4 [49] 2019 980 2.7 [50] 高光束质量 2019 980 M2(1/e2) 1.5 [51] 2019 1060 1.1 [52] 2021 975 1.66 [47] 2022 1015 1.06 [48] 高亮度 2019 980 亮度/(MW·cm-2·sr-1) 126.8(the 2nd moment) [53] 2021 975 369(1/e2) [47] -
[1] 张学聪, 钱静, 刘军, 等. 激光加工纤维增强复合材料研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111432. ZHANG X C, QIAN J, LIU J, et al. Recent processin laser processingof fiber-reinforcedcomposites[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111432(in Chinese).
[2] 陈良惠, 杨国文, 刘育衔. 半导体激光器研究进展[J]. 中国激光, 2020, 47(5): 0500001. CHEN L H, YANG G W, LIU Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 2020, 47(5): 0500001(in Chinese).
[3] 钟海文. 半导体激光点火技术的研究与应用[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020. ZHONG H W. Research and application of semiconductor laser ignition technology[D]. Changchun: University of Chinese Academy of Sciences(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020(in Chinese).
[4] 王宇伟, 何华东, 张文豪, 等. 980 nm半导体红激光辅助后腹腔镜下"零缺血"肾部分切除术的应用经验[J]. 临床泌尿外科杂志, 2022, 37(1): 37-41. WANG Y W, HE H D, ZHANG W H, et al. Experience of 980 nm semiconductor red laser aided "zero ischemia" retroperitoneal laparoscopic partial nephrectomy[J]. Journal of Clinical Urology, 2022, 37(1): 37-41(in Chinese).
[5] MULLER A, FRICKE J, BUGG F, et al. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030nm[J]. Applied Physics B, 2016, 122(4): 1-6.
[6] WENZEL H, PASCHKE K, BROX O, et al. 10 W continuous-wave monolithically integrated master-oscillator power-amplifier[J]. Electronics Letters, 2007, 43(3): 160-162. DOI: 10.1049/el:20073297
[7] SUMPF B, PASCHKE K, KUDRYASHOV A V, et al. Spectrally stabilized high-power high-brightness DBR-tapered lasers in the VIS and NIR range[J]. Proceedings of the SPIE, 2018, 10518: 170-177.
[8] ALBRODT P, JAMAL M T, HANSEN A K, et al. Recent progress in brightness scaling by coherent beam combining of tapered amplifiers for efficient high power frequency doubling[J]. Proceedings of the SPIE, 2019, 10900: 115-124.
[9] GORDEEV N Y, PAYUSOV A, MAXIMOV M. Semiconductor laser quasi-array with phase-locked single-mode emitting channels[J]. Semiconductors, 2019, 35(10): 1405-1408.
[10] KHARAS D, PLANT J, LOH W, et al. High-power(>300 mW) on-chip laser with passively aligned silicon-nitride waveguide DBR cavity[J]. IEEE Photonics Journal, 2020, 12(6): 1-12.
[11] YUAN M Y, WANG W Q, WANG X Y, et al. Demonstration of an external cavity semiconductor mode-locked laser[J]. Optics Letters, 2021, 46(19): 4855-4858. DOI: 10.1364/OL.428794
[12] SUMP B, KLEHR A, VU T N, et al. 975nm high-peak power ns-diode laser based MOPA system suitable for water vapor DIAL application[J]. Proceedings of the SPIE, 2015, 9382: 231-238.
[13] CHRISTENSEN M, HANSEN A K, NOORDEGRAAF D, et al. Modulation of frequency doubled DFB-tapered diode lasers for medical treatment[J]. Proceedings of the SPIE, 2017, 10088: 205-210.
[14] ANDRE T, JENS M, PETER B, et al. Next generation high-brightness diode lasers offer new industrial applications[J]. Proceedings of the SPIE, 2008, 6876: U8760.
[15] HANSEN A K, TAWFIEQ M, JENSEN O B, et al. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals[J]. Optics Express, 2015, 23(12): 15921-15934.
[16] 张建. GaAs基近红外半导体激光器的设计、生长和制备研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2013. ZHANG J. Design, growth and fabrication of near infrared semiconductor laser based on GaAs[D]. Changchun: University of Chinese Academy of Sciences(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2013(in Chinese).
[17] 王芝浩. 970 nm高亮度大功率锥形半导体激光器的研究[D]. 长春: 长春理工大学, 2023. WANG Zh H. Studies on 970 nm high brightness high power tapered semiconductor laser[D]. Changchun: Changchun University of Science and Technology, 2023(in Chinese).
[18] 曼玉选. 高亮度锥形半导体激光器结构的研究[D]. 北京: 中国科学院大学(中国科学院半导体研究所), 2021. MAN Y X. Research on structure of high-brightness tapered diode lasers[D]. Beijing: University of Chinese Academy of Sciences(Institute of Semiconductors, Chinese Academy of Sciences), 2021(in Chinese).
[19] 杨晔, 刘云, 秦莉, 等. 850 nm高亮度锥形半导体激光器的光电特性[J]. 发光学报, 2011, 32(6): 593-597. YANG Y, LIU Y, QIN L, et al. Electro-optic properties of 850 nm high-brightness tapered lasers[J]. Chinese Journal of Luminescence, 2011, 32(6): 593-597(in Chinese).
[20] YANG Y, LIU Y, ZHANG J L, et al. Near diffraction limit high-brightness 850 nm tapered laser diodes[J]. Chinese Journal of Luminescence, 2011, 32(10): 1064-1068.
[21] LIU L, QU H, WANG Y, et al. High-brightness single-mode double-tapered laser diodes with laterally coupled high-order surface grating[J]. Optics Letters, 2014, 39(11): 3231-3234.
[22] LI Y, DU W Ch, ZHOU K, et al. High-brightness tapered laser diodes with photonic crystal structures[J]. Proceedings of the SPIE, 2018, 10697: 1238-1242.
[23] 谭满清, 游道明, 郭文涛, 等. 单片集成式主振荡功率放大器研究进展[J]. 中国光学, 2023, 16(1): 61-75. TAN M Q, YOU D M, GUO W T, et al. Research progress of monolithic integration master-oscillation power-amplifiers[J]. Chinese Optics, 2023, 16(1): 61-75(in Chinese).
[24] 杨晶晶. 锥形半导体激光器模式调控研究[D]. 长春: 长春理工大学, 2023. YANG J J. Study on mode regulation of tapered laser diode[D]. Changchun: Changchun University of Science and Technology, 2003 (in Chinese).
[25] 朱坤, 李辉, 郝永芹, 等. 分布布喇格反射器半导体激光器中光栅结构设计[J]. 中国激光, 2023, 50(11): 1101022. ZHU K, LI H, HAO Y Q, et al. Design of grating structure in distributed Bragg reflector semiconductor laser[J]. Chinese Journal of Lasers, 2023, 50(11): 1101022 (in Chinese).
[26] LEI Y X, CHEN Y Y, GAO F, et al. 990 nm high-power high-beam-quality DFB laser with narrow linewidth regulation led by gain-coupled effect[J]. IEEE Photonics Journal, 2019, 11(1): 1-9.
[27] KAUNGA-NYIRENDA S N, BULL S, LIM J J, et al. Factors influencing brightness and beam quality of conventional and distributed Bragg reflector tapered laser diodes in absence of self-heating[J]. IET Optoelectronics, 2014, 8(2): 99-107.
[28] FRICKE J, WENZEL H, BUGGE F, et al. High-power distributed feedback lasers with surface gratings[J]. IEEE Photonics Technology Letters, 2012, 24(16): 1443-1445.
[29] ZOLOTAREV V V, YU L A, SOKOLOVA Z N, et al. Diode lasers with front surface high-order distributed Bragg reflector[C]//Fifth International Symposium on Coherent Optical Radiation of Semiconductor Compounds and Structures. Moscow, Russia: Journal of Physics Conference Series, 2016, 740(1): 012003.
[30] MÜLLER A, FRICKE J, BUGG F, et al. DBR tapered diode laser at 1030 nm with nearly diffraction-limited narrowband emission and 12.7 W of optical output power[J]. Proceedings of the SPIE, 2016, 9767: 193-200.
[31] MÜLLER A, ZINK C, FRICKE J, et al. 1030 nm DBR tapered diode laser with up to 16 W of optical output power[J]. Proceedings of the SPIE, 2017, 10123: 197-203.
[32] MÜLLER A, FRICKE J, BROX O, et al. Increased diffraction efficiencies of DBR gratings in diode lasers with adiabatic ridge waveguides[J]. Semiconductor Science and Technology, 2016, 31(12): 125011.
[33] CHRISTOF Z, MAABDORF A, FRICKE J, et al. Monolithic master oscillator tilted tapered power amplifier emitting 9.5 W at 1060 nm[J]. IEEE Photonics Technology Letters, 2020, 32(1): 59-62.
[34] 侯继达. 905 nm外延叠层多有源区激光器的研制[D]. 北京: 中国科学院研究生院, 2018. HOU J D. Study on and fabrication of 905 nm epitaxially stacked structure semiconductor laser[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2018(in Chinese).
[35] TIJERO J M G, ODRIOZOLA H, BORRUEL L, et al. Enhanced brightness of tapered laser diodes based on an asymmetric epitaxial design[J]. IEEE Photonics Technology Letters, 2007, 19(20): 1640-1642.
[36] GUO R, ZHENG J, ZHANG Y, et al. Suppressing longitudinal spatial hole burning with dual assisted phase shifts in pitch-modulated DFB lasers[J]. Science Bulletin, 2015, 60(11): 1026-1032.
[37] PASCHKE K, SUMPF B, DITTMAR F, et al. Nearly diffraction limited 980 nm tapered diode lasers with an output power of 7.7 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(5): 1223-1227.
[38] OSTENDORF R, KAUFEL G, MORITZ R, et al. 10 W high-efficiency high-brightness tapered diode lasers at 976 nm[J]. Proceedings of the SPIE, 2008, 6876: 146-153.
[39] FIEBIG C, BLUME G, KASPARI C, et al. 12 W high-brightness single-frequency DBR tapered diode laser[J]. Electronics Letters, 2008, 44(21): 1253-1255.
[40] M LLER A, ZINK C, FRICKE J, et al. Efficient, high brightness 1030 nm DBR tapered diode lasers with optimized lateral layout[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(6): 1-7.
[41] 李长伟, 陈笑, 蔡园园, 等. 一维边发射有机半导体光子晶体激光器设计[J]. 光学学报, 2018, 38(9): 0914001. LI Ch W, CHEN X, CAI Y Y, et al. Design of one-dimensional edge-emitting organic semiconductor photonic crystal lasers[J]. Acta Optica Sinica, 2018, 38(9): 0914001(in Chinese).
[42] MA X L, LIU A J, QU H W, et al. Nearly diffraction-limited and low-divergence tapered lasers with photonic crystal structure[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2403-2406.
[43] MA X L, QU H W, QI A Y, et al. High power tapered lasers with optimized photonic crystal structure for low divergence and high efficiency[J]. Semiconductor Science and Technology, 2018, 33(4): 045010.
[44] 李景, 邱运涛, 曹银花, 等. 高亮度锥形半导体激光器[J]. 发光学报, 2016, 37(8): 990-995. LI J, QIU Y T, CAO Y H, et al. High brightness tapered diode laser[J]. Chinese Journal of Luminescence, 2016, 37(8): 990-995(in Chinese).
[45] 孙胜明, 范杰, 徐莉, 等. 976 nm锥形半导体激光器结构设计与优化[J]. 红外与激光工程, 2017, 46(12): 32-37. SUN Sh M, FAN J, XU L, et al. Design and optimization of 976 nm tapered semiconductor laser[J]. Infrared and Laser Engineering, 2017, 46(12): 32-37(in Chinese).
[46] 吕国瑞, 卞进田, 温佳起, 等. 窄谱宽中红外激光技术研究进展[J]. 激光技术, 2023, 47(6): 742-750. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.003 LÜ G R, BIAN J T, WENG J Q, et al. Research progress of narrow-linewidth mid-infrared laser[J]. Laser Technology, 2023, 47(6): 742-750(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.06.003
[47] 曼玉选, 仲莉, 马骁宇, 等. 975 nm分离电极锥形半导体激光器特性分析[J]. 中国激光, 2021, 48(17): 1701005. MAN Y X, ZHONG L, MA X Y, et al. Characteristic analysis of 975 nm tapered semiconductor lasers with separated contacts[J]. Chinese Journal of Lasers, 2021, 48(17): 1701005(in Chinese).
[48] 杜维川, 何林安, 李弋, 等. 10 W近衍射极限输出的高效率窄线宽主控振荡放大半导体激光器[J]. 红外与毫米波学报, 2023, 42(1): 21-25. DU W Ch, HE L A, LI Y, et al. Monolithic master oscillator high efficiency diode laser with nearly diffraction-limited narrowband emission and 10 W of optical output power[J]. Journal of Infrared Millimeter Waves, 2023, 42(1): 21-25(in Chinese).
[49] LEI Y X, CHEN Y Y, GAO F, et al. 996 nm high-power single-longitudinal-mode tapered gain-coupled distributed feedback laser diodes[J]. Applied Optics, 2019, 58(23): 6426-6432.
[50] LEI Y X, CHEN Y Y, GAO F, et al. High-power single-longitudinal-mode double-tapered gain-coupled distributed feedback semiconductor lasers based on periodic anodes defined by i-line lithography[J]. Optics Communications, 2019, 443: 150-155.
[51] CHEN Zh H, QU H W, MA X L, et al. High-brightness low-divergence tapered lasers with a narrow taper angle[J]. Chinese Physics Letters, 2019, 36(8): 084201.
[52] ZINK C, MAIWALD M, WENZEL H, et al. Monolithic master oscillator with tapered power amplifier diode laser at 1060 nm with additional control section for high power operation[C]//The European Conference on Lasers and Electro-Optics. Munich, Germany: IEEE Press, 2019: 204820575.
[53] ZHOU X Y, MA X L, QU H W, et al. Extremely high-brightness tapered photonic crystal diode laser with narrow-emitting aperture[J]. Applied Physics Express, 2019, 12(9): 094004.
[54] HE L A, DU W Ch, LI Y, et al. Investigation of the gain match in high brightness 980 nm tapered diode laser[J]. Journal of Luminescence, 2023, 257(3): 119644.
[55] 袁庆贺, 井红旗, 张秋月, 等. 砷化镓基近红外大功率半导体激光器的发展及应用[J]. 激光与光电子学进展, 2019, 56(4): 040003. YUAN Q H, JING H Q, ZHANG Q Y, et al. Development and applications of GaAs-based near-infrared high power semiconductor lasers[J]. Laser & Optoelectronics Progress, 2019, 56(4): 040003(in Chinese).