-
本文中演示的ECSL工作原理如图 1a所示。包括脊波导增益芯片和保偏布喇格光栅,二者被固定在热电制冷器上进行热管理。激光器被封装成标准14-PIN蝶形封装激光器。谐振腔形成在增益芯片高反射率端面和布喇格光栅的等效中心之间。增益芯片采用压应变量子阱,基于晶格失配引入应变以提高TE模式与TM模式的模式增益差。线偏振输出是来自双折射FBG的正交偏振本征模式选择和外腔注入光反馈[18],如图 1b所示,为增益芯片的放大自发辐射(amplified spontaneous emission, ASE)谱和光栅反射谱。图中,R0和R1是增益芯片增透(anti-reflection, AR)和高反涂层端面的反射率;RB和LB是布喇格光栅的反射率和长度;C0是增益芯片与布喇格光栅之间的耦合效率;LGC和Lext是增益(gain chip,GC)芯片和外腔的腔长;Ld是等效谐振腔的长度;Reff是等效反射率。
-
本文中提出的激光器结构可等效为一个有源区和一个无源外腔的组合[14],线宽与光子寿命τp成反比,而τp则与等效谐振腔的长度Ld和等效反射率Reff有关,Reff体现了增益芯片AR端面与外腔的共同作用[19]:
$R_{\text {eff }}=\frac{R_0{ }^2+C_0{ }^2 R_{\mathrm{B}}{ }^2+2 C_0 R_{\mathrm{B}} R_0 \cos \left(\omega \tau_{\mathrm{e}}-\theta_{\text {ref }}\right)}{1+C_0{ }^2 R_{\mathrm{B}}{ }^2 R_0{ }^2+2 C_0 R_{\mathrm{B}} R_0 \cos \left(\omega \tau_{\mathrm{e}} \theta_{\text {ref }}\right)}$
(1) 式中:ω为角速度;τe是渡越时间;θref是反射光的相位系数。Reff主要取决于布喇格光栅反射率,而激光线宽涉及到光子寿命、反馈延时等因素,因此将谐振腔看作模式间隔固定的孤立激光器[20],模式间隔为:
$\Delta \nu=\frac{R_{\mathrm{S}}\left(1+\alpha^2\right)}{P}\left(\frac{n_{\mathrm{GC}} L_{\mathrm{GC}}}{n_{\mathrm{GC}} L_{\mathrm{GC}}+n_{\mathrm{ext}} L_{\mathrm{ext}}}\right)$
(2) 式中:nGC和next是增益芯片和外腔的有效折射率;Rs是自发发射速率;α是线宽增强因子。输出功率P和注入电流I之间的关系可以表示为[19]:
$P=\left(I-I_{\mathrm{th}}\right) /\left[q {\mathit{\Gamma}} \varepsilon \nu_{\mathrm{g}}\left(N-N_0\right)\right]$
(3) 式中:q是电荷量;Γ是约束因子;ε是差分增益;νg是群速度;Ith是阈值电流;N是载流子密度;N0是阈值载流子密度。
图 2显示了光栅反射率RB、外腔长度Lext和增益芯片长度LGC对线宽特性的影响。在其它参数恒定时,激光线宽随注入电流的增加而减小,这是因为激光器激射后的自发发射状态将逐渐趋于稳定。高反射率布喇格光栅将减小谐振腔内的光场波动[17],外腔长度与光子寿命直接相关,而增益芯片的长度决定了有源区的体积并制约阈值电流和本征吸收损耗,延长外腔与缩短芯片是压窄线宽的直接手段。上述分析过程可以指导分立器件的参数设计,但在激光器整体的实际设计制备过程中要综合考虑激光输出功率、器件耦合封装以及芯片光刻工艺等因素。
-
双折射布喇格光栅是采用飞秒激光逐点刻写技术在保偏光纤(polarization-maintaining fiber, PMF)(Corning,PM780)中制备的[21],所研制的3阶保偏光栅长度LB=6.00 mm。图 1b中黑色曲线是增益芯片的ASE谱,红色曲线为布喇格光栅反射谱,TE和TM模式峰值波长分别为852.330 nm和852.585 nm, 对应双折射值Δn=1.448×10-4(Δn=Δλeff, TM-TE/2Λ),其中,Δλeff, TM-TE表示两个模式的波长差,Λ表示光栅周期。较大的波长差有利于增强偏振模式的增益差,并实现高偏振消光比(polarization extinction ratio, PER)激光器。光栅的边模抑制比(side-mode suppression ratio, SMSR)分别为20.633 dB和20.250 dB,如图 1b中的插图所示。布喇格光栅的高SMSR有助于提升ECSL的单模特性。
增益介质采用自研的1.50 mm腔长(LGC)GaAs量子阱增益芯片[22],通过脊型弯曲波导结构[23]满足单模截止条件,并确保单横模输出。双沟槽能够减小驱动电流横向扩散,降低阈值。输出端面附近波导具有7°倾角,并在增益芯片的两侧输出端面分别镀有高反/增透涂层,以降低增益芯片内腔模式对等效谐振腔选频的影响。
通过线性偏振控制器和可调光纤到光纤耦合器表征增益芯片的偏振特性[24],如图 3a所示。图中,L1和L2是透镜,P是线性偏振器。图 3b和图 3c显示了增益芯片在不同偏振角和注入电流下的ASE谱。这些结果表明量子阱增益芯片自身也具有一定的偏振特性,从TM模式到TE模式的极化变化而引起的ASE峰的移动,是由于有源区量子阱的压应变效应[25]。基于半导体材料的晶格失配和应变之间的关系,压应变使价带中的重空穴带高于轻空穴带。第一导带和第一重空穴价带之间的载流子复合占主导地位,增益芯片的TE偏振模式占优。这更有利于光栅对TE模式的选择,实现更大的模式增益差,提高整个激光器的PER。
基于保偏布喇格光栅的窄线宽半导体激光器
Narrow linewidth semiconductor laser based on polarization maintaining Bragg grating
-
摘要: 为了研制面向量子精密测量应用的近红外波段光纤光栅外腔半导体激光器,采用独立设计的高偏振依赖增益芯片和双折射光纤布喇格光栅,通过法布里-珀罗等效谐振腔模型,系统分析了光栅反射率、外腔和芯片长度对激光线宽的影响。结果表明,所研制激光器实现了54.46 mW的输出功率、58.88 dB的边模抑制比和24.46 dB的偏振消光比,利用延迟自外差拍频方法测得的洛伦兹线宽低至2.69 kHz。此研究为独立设计制备分立器件的单频窄线宽外腔半导体激光器提供参考,有望应用于雷达成像、陀螺仪、磁力仪和原子钟等量子精密测量领域。Abstract: In order to develop a near-infrared band fiber grating external cavity semiconductor laser for quantum precision measurement applications, a high polarization dependent gain chip and a birefringent fiber Bragg grating were designed independently, the effects of grating reflectivity, external cavity, and chip length on laser linewidth were systematically analyzed based on the Fabry-Pérot equivalent resonant cavity model. The results showe that the developed laser achieves an output power of 54.46 mW, a side mode suppression ratio of 58.88 dB, and a polarization extinction ratio of 24.46 dB. The Lorentz linewidth measured is 2.69 kHz by delayed self-heterodyne beat frequency method. This study provides a reference for the single frequency narrow linewidth external cavity semiconductor lasers with independent design and preparation of discrete devices, and is expected to be used in quantum precision measurement fields such as radar imaging, gyroscopes, magnetometers, and atomic clocks.
-
-
[1] 徐强, 沈思, 谢修敏, 等. 可用于激光雷达的量子光学技术[J]. 激光技术, 2021, 45(1): 44-47. doi: 10.7510/jgjs.issn.1001-3806.2021.01.008 XU Q, SHEN S, XIE X M, et al. Quantum optical techniques for laser detection and ranging[J]. Laser Technology, 2021, 45(1): 44-47(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2021.01.008 [2] SHI H, CHANG P, WANG Z, et al. Frequency stabilization of a Cesium Faraday laser with a double-layer vapor cell as frequency reference[J]. IEEE Photonics Journal, 2022, 14(6): 1561006. [3] CHOU C W, HUME D B, ROSENBAND T, et al. Optical clocks and relativity[J]. Science, 2010, 329(5999): 1630-1633. doi: 10.1126/science.1192720 [4] LUVSANDAMDIN E, SPIEβBERGER S, SCHIEMANGK M, et al. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space[J]. Applied Physics, 2013, B111(2): 255-260. [5] LUDLOW A D, ZCLCVINSKY T, CAMPBELL G K, et al. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 2008, 319(5871): 1805-1808. doi: 10.1126/science.1153341 [6] HUMMON M T, KANG S, BOPP D G, et al. Photonic chip for laser stabilization to an atomic vapor with 10-11 instability[J]. Optica, 2018, 5(4): 443-449. doi: 10.1364/OPTICA.5.000443 [7] 张建伟, 宁永强, 张星, 等. 高温工作垂直腔面发射半导体激光器现状与未来(特邀)[J]. 光子学报, 2022, 51(2): 0251201. ZHANG J W, NING Y Q, ZHANG X, et al. Development and future of vertical cavity surface emitting lasers operated at high temperatures (invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251201(in Chinese). [8] 何幸锴, 侯辉, 冯力天, 等. 1550 nm单频脉冲光纤激光放大器实验研究[J]. 激光技术, 2011, 35(2): 145-148. doi: 10.3969/j.issn.1001-3806.2011.02.001 HE X K, HOU H, FENG L T, et al. Experimental study of 1550 nm single frequency pulsed fiber laser amplifiers[J]. Laser Technology, 2011, 35(2): 145-148(in Chinese). doi: 10.3969/j.issn.1001-3806.2011.02.001 [9] FABIAN M, NICOLE K, BENNO W. Stabilized laser system at 1550 nm wavelength for future gravitational-wave detectors[J]. Physical Review, 2022, D105(12): 122004. [10] KRAKOWSKIA M, MEGHNAGIA M, AFUSO-ROXOA P, et al. Modulated DFB-ridge laser diodes at 894 nm for compact Cesium CPT atomic clocks[J]. Proceedings of the SPIE, 2023, 12440: 1244004. [11] JIMENEZ A, MILDE T, STAACKE N, et al. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range[J]. Applied Physics, 2017, B123(7): 1-14. [12] YIM S, KIM T, CHOI J. A simple extended-cavity diode laser using a precision mirror mount[J]. Review of Scientific Instruments, 2020, 91(4): 046102. doi: 10.1063/1.5140560 [13] 郭天华, 汪岳峰, 于广礼. 光纤光栅外腔半导体激光器理论模型分析与选取[J]. 激光技术, 2017, 41(2): 225-230. doi: 10.7510/jgjs.issn.1001-3806.2017.02.016 GUO T H, WANG Y F, YU G L. Selection and analysis of theoretical model of fiber Bragg grating external cavity laser diode[J]. Laser Technology, 2017, 41(2): 225-230(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2017.02.016 [14] 王直圆, 陈超, 单肖楠, 等. 光纤光栅外腔半导体激光器噪声特性仿真[J]. 激光与光电子进展, 2017, 54(1): 011401. WANG Zh Y, CHEN Ch, SHAN X N, et al. Simulation of noise characteristics of fiber grating external cavity lasers[J]. Laser and Optoelectronics Progress, 2017, 54(1): 011401(in Chinese). [15] ZHANG L, WEI F, SUN G W, et al. Thermal tunable narrow linewidth external cavity laser with thermal enhanced FBG[J]. IEEE Photonics Technology Letters, 2017, 29(4): 385-388. doi: 10.1109/LPT.2017.2648889 [16] PAUL A. MORTON, MICHAEL J M. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing[J]. Journal of Lightwave Technology, 2018, 36(21): 5048-5057. doi: 10.1109/JLT.2018.2817175 [17] HISHAM H K, ABAS A F, MAHDIRAJI G A, et al. Improving the characteristics of the modulation response for fiber Bragg grating Fabry-Perot lasers by optimizing model parameters[J]. Optics and Laser Technology, 2012, 44(6): 1698-1705. doi: 10.1016/j.optlastec.2012.01.027 [18] HAO L, WANG X, JIA K, et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics[J]. Optics Letters, 2021, 46(15): 3769-3772. doi: 10.1364/OL.434307 [19] LUO X C, CHEN C, NING Y Q, et al. Single polarization, narrow linewidth hybrid laser based on selective polarization mode feedback[J]. Optics and Laser Technology, 2022, 154: 108340. doi: 10.1016/j.optlastec.2022.108340 [20] HENRY C H. Theory of the linewidth of semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1982, 18(2): 259-264. doi: 10.1109/JQE.1982.1071522 [21] MALINAUSKAS M, ŽUKAUSKAS A, HADEGAWA S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Sciences and Applications, 2016, 5(8): e16133. doi: 10.1038/lsa.2016.133 [22] 徐华伟, 宁永强, 曾玉刚, 等. 852 nm半导体激光器InGaAlAs, InGaAsP, InGaAs和GaAs量子阱的温度稳定性[J]. 发光学报, 2012, 33(6): 640-646. XU H W, NING Y Q, ZENG Y G, et al. Temperature stability of InGaAlAs, InGaAsP, InGaAs and GaAsquantum-wells for 852 nm laser diode[J]. Chinese Journal of Luminescence, 2012, 33(6): 640-646(in Chinese). [23] VERMERSCH F J, LIGERET V, BANSROPUN S, et al. High-power narrow linewidth distributed feedback lasers with an Aluminium-free active region emitting at 852 nm[J]. IEEE Photonics Technology Letters, 2008, 20(13): 1145-1147. doi: 10.1109/LPT.2008.924903 [24] LUO X C, CHEN C, NING Y Q, et al. High linear polarization, narrow linewidth hybrid semiconductor laser with an external birefringence waveguide Bragg grating[J]. Optics Express, 2021, 29(21): 33109-33120. doi: 10.1364/OE.431341 [25] WANG Y, TAI H, DUAN R, et al. Super-gain nanostructure with self-assembled well-wire complex energy-band engineering for high performance of tunable laser diodes[J]. Nanophotonics, 2023, 12(9): 1763-1776. doi: 10.1515/nanoph-2023-0013 [26] WANG Z, KE C, ZHONG Y, et al. Ultra-narrow-linewidth measurement utilizing dual parameter acquisition through a partially coherent light interference[J]. Optics Express, 2020, 28(6): 8484-8493. doi: 10.1364/OE.387398 [27] CANAGASABEY A, MICHIE A, CANNING J, et al. A comparison of Michelson and Mach-Zehnder interferometers for laser linewidth measurements[C]//2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim. New York, USA: IEEE Press, 2011: 1392-1394. [28] CHEN M, MENG Z, WANG J F, et al. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics Express, 2015, 23(5): 6803-6808. doi: 10.1364/OE.23.006803