高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于保偏布喇格光栅的窄线宽半导体激光器

陈加齐 陈超 孙晶晶 张建伟 刘朝晖 赵佳欣 杜明远 李向尚 秦莉 宁永强 王立军

引用本文:
Citation:

基于保偏布喇格光栅的窄线宽半导体激光器

    通讯作者: 陈超, chenc@ciomp.ac.cn
  • 基金项目:

    吉林省科技发展基金资助项目 20220201063GX

    国家自然科学基金资助项目 62090060

    国家自然科学基金资助项目 62374164

    长春市科技发展计划资助项目 22SH01

  • 中图分类号: TN248.4;TN256

Narrow linewidth semiconductor laser based on polarization maintaining Bragg grating

    Corresponding author: CHEN Chao, chenc@ciomp.ac.cn ;
  • CLC number: TN248.4;TN256

  • 摘要: 为了研制面向量子精密测量应用的近红外波段光纤光栅外腔半导体激光器,采用独立设计的高偏振依赖增益芯片和双折射光纤布喇格光栅,通过法布里-珀罗等效谐振腔模型,系统分析了光栅反射率、外腔和芯片长度对激光线宽的影响。结果表明,所研制激光器实现了54.46 mW的输出功率、58.88 dB的边模抑制比和24.46 dB的偏振消光比,利用延迟自外差拍频方法测得的洛伦兹线宽低至2.69 kHz。此研究为独立设计制备分立器件的单频窄线宽外腔半导体激光器提供参考,有望应用于雷达成像、陀螺仪、磁力仪和原子钟等量子精密测量领域。
  • 图 1  a—激光器工作原理示意图 b—增益芯片ASE谱和光栅反射谱

    Figure 1.  a—schematic of the working principle for the laser b—ASE spectrum of the gain chip and grating reflection spectrum, the inset is the reflection spectrum peak

    图 2  光栅反射率、外腔长度和增益芯片长度与激光线宽的数值关系

    Figure 2.  Numerical relationship between grating reflectivity, external cavity length, gain chip length and the laser linewidth

    图 3  a—增益芯片的偏振特性测量系统 b,c—不同偏振角、不同注入电流下的ASE谱

    Figure 3.  a—measurement system of the polarization characteristic for the gain chip b, c—ASE spectra at different polarization angles and different injection currents

    图 4  a—注入电流为300 mA时的激射光谱 b—激射光谱作为注入电流函数的彩色喷射图

    Figure 4.  a—laser spectrum at the injection current of 300 mA b—color jet plot of the laser spectra as a function of the injection currents

    图 5  a—激射波长、SMSR作为注入电流函数的情况 b—激光器的P-I-V特性

    Figure 5.  a—variation of the laser wavelength and the SMSR with the injection current b—P-I-V characteristics of the laser

    图 6  a—输出功率与偏振角关系 b, c—TE模式和TM模式的激射光谱

    Figure 6.  a—relationship between output power and polarization angle b, c—laser spectra of TE mode and TM mode

    图 7  a—延时自外差线宽测量系统 b—拍频功率谱及拟合曲线

    Figure 7.  a—linewidth measurement system of the delay self-heterodyne b—beat frequency power spectrum and fitting curves

  • [1] 徐强, 沈思, 谢修敏, 等. 可用于激光雷达的量子光学技术[J]. 激光技术, 2021, 45(1): 44-47. doi: 10.7510/jgjs.issn.1001-3806.2021.01.008

    XU Q, SHEN S, XIE X M, et al. Quantum optical techniques for laser detection and ranging[J]. Laser Technology, 2021, 45(1): 44-47(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2021.01.008
    [2]

    SHI H, CHANG P, WANG Z, et al. Frequency stabilization of a Cesium Faraday laser with a double-layer vapor cell as frequency reference[J]. IEEE Photonics Journal, 2022, 14(6): 1561006.
    [3]

    CHOU C W, HUME D B, ROSENBAND T, et al. Optical clocks and relativity[J]. Science, 2010, 329(5999): 1630-1633. doi: 10.1126/science.1192720
    [4]

    LUVSANDAMDIN E, SPIEβBERGER S, SCHIEMANGK M, et al. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space[J]. Applied Physics, 2013, B111(2): 255-260.
    [5]

    LUDLOW A D, ZCLCVINSKY T, CAMPBELL G K, et al. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 2008, 319(5871): 1805-1808. doi: 10.1126/science.1153341
    [6]

    HUMMON M T, KANG S, BOPP D G, et al. Photonic chip for laser stabilization to an atomic vapor with 10-11 instability[J]. Optica, 2018, 5(4): 443-449. doi: 10.1364/OPTICA.5.000443
    [7] 张建伟, 宁永强, 张星, 等. 高温工作垂直腔面发射半导体激光器现状与未来(特邀)[J]. 光子学报, 2022, 51(2): 0251201.

    ZHANG J W, NING Y Q, ZHANG X, et al. Development and future of vertical cavity surface emitting lasers operated at high temperatures (invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251201(in Chinese).
    [8] 何幸锴, 侯辉, 冯力天, 等. 1550 nm单频脉冲光纤激光放大器实验研究[J]. 激光技术, 2011, 35(2): 145-148. doi: 10.3969/j.issn.1001-3806.2011.02.001

    HE X K, HOU H, FENG L T, et al. Experimental study of 1550 nm single frequency pulsed fiber laser amplifiers[J]. Laser Technology, 2011, 35(2): 145-148(in Chinese). doi: 10.3969/j.issn.1001-3806.2011.02.001
    [9]

    FABIAN M, NICOLE K, BENNO W. Stabilized laser system at 1550 nm wavelength for future gravitational-wave detectors[J]. Physical Review, 2022, D105(12): 122004.
    [10]

    KRAKOWSKIA M, MEGHNAGIA M, AFUSO-ROXOA P, et al. Modulated DFB-ridge laser diodes at 894 nm for compact Cesium CPT atomic clocks[J]. Proceedings of the SPIE, 2023, 12440: 1244004.
    [11]

    JIMENEZ A, MILDE T, STAACKE N, et al. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range[J]. Applied Physics, 2017, B123(7): 1-14.
    [12]

    YIM S, KIM T, CHOI J. A simple extended-cavity diode laser using a precision mirror mount[J]. Review of Scientific Instruments, 2020, 91(4): 046102. doi: 10.1063/1.5140560
    [13] 郭天华, 汪岳峰, 于广礼. 光纤光栅外腔半导体激光器理论模型分析与选取[J]. 激光技术, 2017, 41(2): 225-230. doi: 10.7510/jgjs.issn.1001-3806.2017.02.016

    GUO T H, WANG Y F, YU G L. Selection and analysis of theoretical model of fiber Bragg grating external cavity laser diode[J]. Laser Technology, 2017, 41(2): 225-230(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2017.02.016
    [14] 王直圆, 陈超, 单肖楠, 等. 光纤光栅外腔半导体激光器噪声特性仿真[J]. 激光与光电子进展, 2017, 54(1): 011401.

    WANG Zh Y, CHEN Ch, SHAN X N, et al. Simulation of noise characteristics of fiber grating external cavity lasers[J]. Laser and Optoelectronics Progress, 2017, 54(1): 011401(in Chinese).
    [15]

    ZHANG L, WEI F, SUN G W, et al. Thermal tunable narrow linewidth external cavity laser with thermal enhanced FBG[J]. IEEE Photonics Technology Letters, 2017, 29(4): 385-388. doi: 10.1109/LPT.2017.2648889
    [16]

    PAUL A. MORTON, MICHAEL J M. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing[J]. Journal of Lightwave Technology, 2018, 36(21): 5048-5057. doi: 10.1109/JLT.2018.2817175
    [17]

    HISHAM H K, ABAS A F, MAHDIRAJI G A, et al. Improving the characteristics of the modulation response for fiber Bragg grating Fabry-Perot lasers by optimizing model parameters[J]. Optics and Laser Technology, 2012, 44(6): 1698-1705. doi: 10.1016/j.optlastec.2012.01.027
    [18]

    HAO L, WANG X, JIA K, et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics[J]. Optics Letters, 2021, 46(15): 3769-3772. doi: 10.1364/OL.434307
    [19]

    LUO X C, CHEN C, NING Y Q, et al. Single polarization, narrow linewidth hybrid laser based on selective polarization mode feedback[J]. Optics and Laser Technology, 2022, 154: 108340. doi: 10.1016/j.optlastec.2022.108340
    [20]

    HENRY C H. Theory of the linewidth of semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1982, 18(2): 259-264. doi: 10.1109/JQE.1982.1071522
    [21]

    MALINAUSKAS M, ŽUKAUSKAS A, HADEGAWA S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Sciences and Applications, 2016, 5(8): e16133. doi: 10.1038/lsa.2016.133
    [22] 徐华伟, 宁永强, 曾玉刚, 等. 852 nm半导体激光器InGaAlAs, InGaAsP, InGaAs和GaAs量子阱的温度稳定性[J]. 发光学报, 2012, 33(6): 640-646.

    XU H W, NING Y Q, ZENG Y G, et al. Temperature stability of InGaAlAs, InGaAsP, InGaAs and GaAsquantum-wells for 852 nm laser diode[J]. Chinese Journal of Luminescence, 2012, 33(6): 640-646(in Chinese).
    [23]

    VERMERSCH F J, LIGERET V, BANSROPUN S, et al. High-power narrow linewidth distributed feedback lasers with an Aluminium-free active region emitting at 852 nm[J]. IEEE Photonics Technology Letters, 2008, 20(13): 1145-1147. doi: 10.1109/LPT.2008.924903
    [24]

    LUO X C, CHEN C, NING Y Q, et al. High linear polarization, narrow linewidth hybrid semiconductor laser with an external birefringence waveguide Bragg grating[J]. Optics Express, 2021, 29(21): 33109-33120. doi: 10.1364/OE.431341
    [25]

    WANG Y, TAI H, DUAN R, et al. Super-gain nanostructure with self-assembled well-wire complex energy-band engineering for high performance of tunable laser diodes[J]. Nanophotonics, 2023, 12(9): 1763-1776. doi: 10.1515/nanoph-2023-0013
    [26]

    WANG Z, KE C, ZHONG Y, et al. Ultra-narrow-linewidth measurement utilizing dual parameter acquisition through a partially coherent light interference[J]. Optics Express, 2020, 28(6): 8484-8493. doi: 10.1364/OE.387398
    [27]

    CANAGASABEY A, MICHIE A, CANNING J, et al. A comparison of Michelson and Mach-Zehnder interferometers for laser linewidth measurements[C]//2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim. New York, USA: IEEE Press, 2011: 1392-1394.
    [28]

    CHEN M, MENG Z, WANG J F, et al. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics Express, 2015, 23(5): 6803-6808. doi: 10.1364/OE.23.006803
  • [1] 刘晓娟魏功祥周柏君赵翔 . 1120nm窄线宽掺镱光纤激光器. 激光技术, 2016, 40(3): 349-352. doi: 10.7510/jgjs.issn.1001-3806.2016.03.010
    [2] 李川陈安涛赵文娟韩一平 . 三谱线、高峰值功率窄线宽纳秒光纤激光器. 激光技术, 2019, 43(6): 753-756. doi: 10.7510/jgjs.issn.1001-3806.2019.06.004
    [3] 魏兴春欧攀张春熹贾豫东李大伟 . 单频单偏振窄线宽光纤激光器及其放大研究. 激光技术, 2010, 34(1): 5-7,29. doi: 10.3969/j.issn.1001-3806.2010.01.002
    [4] 江鹏飞赵伟瑞张静娟谢福增 . 窄线宽的外腔半导体激光器. 激光技术, 2004, 28(2): 160-161.
    [5] 李慧王志敏张丰丰王明强李家佳崔大复彭钦军许祖彦 . 全固态单频激光技术. 激光技术, 2016, 40(1): 141-147. doi: 10.7510/jgjs.issn.1001-3806.2016.01.031
    [6] 朱天雄贾华宇李灯熬罗飚刘应军田彦婷 . AlGaInAs/InP应变补偿多量子阱激光器. 激光技术, 2017, 41(5): 654-658. doi: 10.7510/jgjs.issn.1001-3806.2017.05.007
    [7] 刘建强汪楠杨盈莹王菲林学春 . 一种声光调Q窄脉宽小体积激光器. 激光技术, 2017, 41(4): 562-565. doi: 10.7510/jgjs.issn.1001-3806.2017.04.021
    [8] 宗磊王英 . 1.3μm波段单横模大功率输出量子点激光器. 激光技术, 2014, 38(1): 6-10. doi: 10.7510/jgjs.issn.1001-3806.2014.01.002
    [9] 郭婧谢生毛陆虹郭维廉 . GaAs/AlGaAs环形激光器的量子阱结构优化. 激光技术, 2015, 39(5): 654-657. doi: 10.7510/jgjs.issn.1001-3806.2015.05.014
    [10] 薛海中陆富源薛梅柳强过振张海涛巩马理 . Yb:YAG板条激光器谐振腔设计与光束质量测量. 激光技术, 2006, 30(6): 585-588.
    [11] 吴钟壮伏云昌刘洪喜张晓伟王传琦李俊昌 . CO2激光器功率分布的实验测量及数值模拟. 激光技术, 2012, 36(4): 512-515. doi: 10.3969/j.issn.1001-806.2012.04.019
    [12] 耿伟彪胡姝玲邵洪峰 . 基于FPGA数字相位调制光外差激光稳频系统设计. 激光技术, 2014, 38(5): 665-668. doi: 10.7510/jgjs.issn.1001-3806.2014.05.019
    [13] 王可宁刘允雷陈海滨郭子龙 . 移频延时自外差法的DFB激光器线宽测量. 激光技术, 2018, 42(5): 633-637. doi: 10.7510/jgjs.issn.1001-3806.2018.05.010
    [14] 郭嘉伟李彤牛瑞华薛亮平李燕凌王宏元 . Cr,Tm,Ho:YAG激光器温度特性的数值分析. 激光技术, 2011, 35(6): 761-764. doi: 10.3969/j.issn.1001-3806.2011.06.010
    [15] 高恒刘佳铭杨闯赵刚李斌彭绪金刘亚萍 . 用于远程激光测距机的小体积高功率固体激光器. 激光技术, 2019, 43(5): 597-600. doi: 10.7510/jgjs.issn.1001-3806.2019.05.002
    [16] 方刚徐向涛全恩臣戴特力范嗣强张鹏 . 掺Yb3+双包层光纤激光器的研究进展. 激光技术, 2014, 38(2): 278-282. doi: 10.7510/jgjs.issn.1001-3806.2014.02.028
    [17] 张延超孙兰君付石友刘立宝田兆硕 . 高重频可调小型高功率半导体激光电源研究. 激光技术, 2012, 36(6): 731-734. doi: 10.3969/j.issn.1001-3806.2012.06.005
    [18] 马海全赵卫张伟王屹山陈国夫程昭 . 波长可调谐被动锁模光纤激光器. 激光技术, 2006, 30(3): 289-291.
    [19] 钟国舜毛小洁秘国江邹跃庞庆生 . 高光束质量窄脉宽激光器. 激光技术, 2013, 37(6): 766-768. doi: 10.7510/jgjs.issn.1001-3806.2013.06.013
    [20] 路英宾卿光弼兰戈陈德章高剑波刘韵 . LD侧面抽运的铒玻璃激光器. 激光技术, 2006, 30(3): 329-331.
  • 加载中
图(7)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 录用日期:  2024-03-19
  • 刊出日期:  2024-11-25

基于保偏布喇格光栅的窄线宽半导体激光器

    通讯作者: 陈超, chenc@ciomp.ac.cn
  • 1. 中国科学院 长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 长春 130033, 中国
  • 2. 中国科学院大学 光电学院, 北京 100049, 中国
  • 3. 吉林大学 电子科学与工程学院, 长春 130012, 中国
  • 4. 长春理工大学 物理学院, 长春 130013, 中国
基金项目:  吉林省科技发展基金资助项目 20220201063GX国家自然科学基金资助项目 62090060国家自然科学基金资助项目 62374164长春市科技发展计划资助项目 22SH01

摘要: 为了研制面向量子精密测量应用的近红外波段光纤光栅外腔半导体激光器,采用独立设计的高偏振依赖增益芯片和双折射光纤布喇格光栅,通过法布里-珀罗等效谐振腔模型,系统分析了光栅反射率、外腔和芯片长度对激光线宽的影响。结果表明,所研制激光器实现了54.46 mW的输出功率、58.88 dB的边模抑制比和24.46 dB的偏振消光比,利用延迟自外差拍频方法测得的洛伦兹线宽低至2.69 kHz。此研究为独立设计制备分立器件的单频窄线宽外腔半导体激光器提供参考,有望应用于雷达成像、陀螺仪、磁力仪和原子钟等量子精密测量领域。

English Abstract

    • 量子精密测量在国防军事、空间探测、生物医疗和基础科学等领域有着至关重要的意义[1],将成为雷达成像、精确制导、核磁共振成像和冷原子物质波干涉实验等领域的关键技术。其中,原子钟、原子陀螺仪、原子磁强计和原子重力仪等典型量子测量系统是基于单频激光对碱金属原子的抽运和量子态操纵[2],表征时间基准[3]、磁场[4]、重力[5]等物理量。这些应用所需激光集中在近红外波段,如对应Rb D1和D2线的795 nm和780 nm以及对应Cs D1和D2线的894 nm和852 nm。上述原子的精细能级跃迁与探测对激光线宽有着苛刻的性能要求[6],兼具窄线宽、结构紧凑优势的窄线宽半导体激光器成为量子精密测量光源的首选[7]

      目前,光纤[8]和固体[9]激光器容易实现千赫兹量级的线宽输出,但难以直接实现原子跃迁和探测所需激光波长,需采用倍频或和频方法。GaAs基半导体激光器则可以直接实现近红外波段的激光输出,其中,单片集成[10]激光器因谐振腔长度较短影响其光子寿命,而涉及百纳米精度光刻和2次外延技术的复杂光栅制备限制其大规模生产和应用。基于littrow和littman结构的外腔半导体激光器[11-12](external cavity semiconductor laser,ECSL)具有波长控制灵活和窄线宽的优势,但调节复杂度和有限的机械稳定性,容易因为振动导致波长失谐。基于布喇格光栅的波导滤波器ECSL,因其简单、稳定的谐振腔结构易于实现窄线宽、低噪声等特性,其中光纤布喇格光栅[13-14](fiber Bragg grating, FBG)是理想的ECSL选频滤波器件,其与半导体增益芯片构建的FBG-ECSL具有优异的性能。分立器件的独立设计易于波长的灵活选择和激光器的批量制备。随着飞秒激光刻写技术的不断发展,近红外波段FBG的制备工艺得到显著提升。

      现有FBG-ECSL主要集中在1550 nm和1310 nm等通信波段[15-16],目前报道的1550 nm激光器已经实现千赫兹量级的线宽[15],这充分证明了FBG结构的潜力。但在面向量子精密测量应用的近红外波段激光器鲜有报道,这种激光器线宽的本质与腔内载流子涨落引起的光场幅值与频率波动有关[17],而这种波动来源于自发辐射光子与腔内模式竞争所导致的,包括横电(transverse-electric, TE)模与横磁(transverse-magnetic, TM)模、谐振腔模式与芯片内腔模式之间的竞争。

      本文作者研制了一种基于保偏FBG和压应变量子阱增益芯片的近红外波段单频窄线宽ECSL。与传统体全息布喇格光栅、闪耀光栅和滤波器结构的ECSL相比,本文中的激光器更加紧凑、集成度更高。基于法布里-珀罗(Fabry-Pérot, F-P)等效谐振腔模型开展分立器件的设计优化,激光器实现了窄线宽、线偏振的激光输出。本文中作者证明了一种结构紧凑、工艺灵活、可批量制备的单频窄线宽半导体激光器的研制方法,为其在雷达成像、陀螺仪、磁力仪和原子钟等高精度测量领域的大规模应用铺平道路。

    • 本文中演示的ECSL工作原理如图 1a所示。包括脊波导增益芯片和保偏布喇格光栅,二者被固定在热电制冷器上进行热管理。激光器被封装成标准14-PIN蝶形封装激光器。谐振腔形成在增益芯片高反射率端面和布喇格光栅的等效中心之间。增益芯片采用压应变量子阱,基于晶格失配引入应变以提高TE模式与TM模式的模式增益差。线偏振输出是来自双折射FBG的正交偏振本征模式选择和外腔注入光反馈[18],如图 1b所示,为增益芯片的放大自发辐射(amplified spontaneous emission, ASE)谱和光栅反射谱。图中,R0R1是增益芯片增透(anti-reflection, AR)和高反涂层端面的反射率;RBLB是布喇格光栅的反射率和长度;C0是增益芯片与布喇格光栅之间的耦合效率;LGCLext是增益(gain chip,GC)芯片和外腔的腔长;Ld是等效谐振腔的长度;Reff是等效反射率。

      图  1  a—激光器工作原理示意图 b—增益芯片ASE谱和光栅反射谱

      Figure 1.  a—schematic of the working principle for the laser b—ASE spectrum of the gain chip and grating reflection spectrum, the inset is the reflection spectrum peak

    • 本文中提出的激光器结构可等效为一个有源区和一个无源外腔的组合[14],线宽与光子寿命τp成反比,而τp则与等效谐振腔的长度Ld和等效反射率Reff有关,Reff体现了增益芯片AR端面与外腔的共同作用[19]

      $R_{\text {eff }}=\frac{R_0{ }^2+C_0{ }^2 R_{\mathrm{B}}{ }^2+2 C_0 R_{\mathrm{B}} R_0 \cos \left(\omega \tau_{\mathrm{e}}-\theta_{\text {ref }}\right)}{1+C_0{ }^2 R_{\mathrm{B}}{ }^2 R_0{ }^2+2 C_0 R_{\mathrm{B}} R_0 \cos \left(\omega \tau_{\mathrm{e}} \theta_{\text {ref }}\right)}$

      (1)

      式中:ω为角速度;τe是渡越时间;θref是反射光的相位系数。Reff主要取决于布喇格光栅反射率,而激光线宽涉及到光子寿命、反馈延时等因素,因此将谐振腔看作模式间隔固定的孤立激光器[20],模式间隔为:

      $\Delta \nu=\frac{R_{\mathrm{S}}\left(1+\alpha^2\right)}{P}\left(\frac{n_{\mathrm{GC}} L_{\mathrm{GC}}}{n_{\mathrm{GC}} L_{\mathrm{GC}}+n_{\mathrm{ext}} L_{\mathrm{ext}}}\right)$

      (2)

      式中:nGCnext是增益芯片和外腔的有效折射率;Rs是自发发射速率;α是线宽增强因子。输出功率P和注入电流I之间的关系可以表示为[19]

      $P=\left(I-I_{\mathrm{th}}\right) /\left[q {\mathit{\Gamma}} \varepsilon \nu_{\mathrm{g}}\left(N-N_0\right)\right]$

      (3)

      式中:q是电荷量;Γ是约束因子;ε是差分增益;νg是群速度;Ith是阈值电流;N是载流子密度;N0是阈值载流子密度。

      图 2显示了光栅反射率RB、外腔长度Lext和增益芯片长度LGC对线宽特性的影响。在其它参数恒定时,激光线宽随注入电流的增加而减小,这是因为激光器激射后的自发发射状态将逐渐趋于稳定。高反射率布喇格光栅将减小谐振腔内的光场波动[17],外腔长度与光子寿命直接相关,而增益芯片的长度决定了有源区的体积并制约阈值电流和本征吸收损耗,延长外腔与缩短芯片是压窄线宽的直接手段。上述分析过程可以指导分立器件的参数设计,但在激光器整体的实际设计制备过程中要综合考虑激光输出功率、器件耦合封装以及芯片光刻工艺等因素。

      图  2  光栅反射率、外腔长度和增益芯片长度与激光线宽的数值关系

      Figure 2.  Numerical relationship between grating reflectivity, external cavity length, gain chip length and the laser linewidth

    • 双折射布喇格光栅是采用飞秒激光逐点刻写技术在保偏光纤(polarization-maintaining fiber, PMF)(Corning,PM780)中制备的[21],所研制的3阶保偏光栅长度LB=6.00 mm。图 1b中黑色曲线是增益芯片的ASE谱,红色曲线为布喇格光栅反射谱,TE和TM模式峰值波长分别为852.330 nm和852.585 nm, 对应双折射值Δn=1.448×10-4nλeff, TM-TE/2Λ),其中,Δλeff, TM-TE表示两个模式的波长差,Λ表示光栅周期。较大的波长差有利于增强偏振模式的增益差,并实现高偏振消光比(polarization extinction ratio, PER)激光器。光栅的边模抑制比(side-mode suppression ratio, SMSR)分别为20.633 dB和20.250 dB,如图 1b中的插图所示。布喇格光栅的高SMSR有助于提升ECSL的单模特性。

      增益介质采用自研的1.50 mm腔长(LGC)GaAs量子阱增益芯片[22],通过脊型弯曲波导结构[23]满足单模截止条件,并确保单横模输出。双沟槽能够减小驱动电流横向扩散,降低阈值。输出端面附近波导具有7°倾角,并在增益芯片的两侧输出端面分别镀有高反/增透涂层,以降低增益芯片内腔模式对等效谐振腔选频的影响。

      通过线性偏振控制器和可调光纤到光纤耦合器表征增益芯片的偏振特性[24],如图 3a所示。图中,L1和L2是透镜,P是线性偏振器。图 3b图 3c显示了增益芯片在不同偏振角和注入电流下的ASE谱。这些结果表明量子阱增益芯片自身也具有一定的偏振特性,从TM模式到TE模式的极化变化而引起的ASE峰的移动,是由于有源区量子阱的压应变效应[25]。基于半导体材料的晶格失配和应变之间的关系,压应变使价带中的重空穴带高于轻空穴带。第一导带和第一重空穴价带之间的载流子复合占主导地位,增益芯片的TE偏振模式占优。这更有利于光栅对TE模式的选择,实现更大的模式增益差,提高整个激光器的PER。

      图  3  a—增益芯片的偏振特性测量系统 b,c—不同偏振角、不同注入电流下的ASE谱

      Figure 3.  a—measurement system of the polarization characteristic for the gain chip b, c—ASE spectra at different polarization angles and different injection currents

    • 图 4图 5所示的激射光谱和功率-电流-电压(P-I-V)特性表明了所研制的蝶形封装激光器的典型光电特性。注入电流和温度分别由超低噪声电流源和热电温度控制器控制,并采用高分辨率光谱分析仪(optical spectrum analyzer, OSA)和功率计测量激射光谱和输出功率,波长分辨率设定为20 pm。

      图  4  a—注入电流为300 mA时的激射光谱 b—激射光谱作为注入电流函数的彩色喷射图

      Figure 4.  a—laser spectrum at the injection current of 300 mA b—color jet plot of the laser spectra as a function of the injection currents

      图  5  a—激射波长、SMSR作为注入电流函数的情况 b—激光器的P-I-V特性

      Figure 5.  a—variation of the laser wavelength and the SMSR with the injection current b—P-I-V characteristics of the laser

      图 4a显示了300 mA的激射光谱,激光器在布喇格波长λB=852.3199 nm时实现了58.88 dB的SMSR。激光器要实现高SMSR,除了与布喇格光栅的高SMSR相关,还与前述增益芯片AR涂层对其内腔模式的有效抑制有关。图 4b显示了在50 mA~300 mA的恒定室温(25℃)下激射光谱作为注入电流函数的彩色喷射图,可以清晰地观察到激光器始终保持单纵模和单横模激光输出,在下文基于延迟自外差拍频的线宽表征中,拍频功率谱也仅显示单频的频率成分。

      图 5呈现了与图 4相对应的SMSR和激射波长随注入电流增加的变化情况以及激光器的P-I-V特性。阈值电流在54 mA附近,最大输出功率54.46 mW,对应的斜率效率0.22 W/A。激射波长蓝移与功率降低的扭结对应模式跳变,这是由于注入电流增加导致增益芯片温度升高,过程中伴随着有源区折射率的变化,改变了谐振腔内的相位。其根本原因是等效腔模式与布喇格谐振模式失谐以及芯片内腔模式与FBG外腔模式之间相互竞争所产生的非线性作用。

    • 激光器的偏振特性表征采用与增益芯片相同的方法,如图 3a所示。图 6a是300 mA下输出功率和偏振角度的极坐标图。0°和90°分别为TE模式和TM模式输出,对应的输出功率为40.71 mW和0.1457 mW,PER值rPER=24.46 dB(rPER=10lg(PTE/PTM),TTETTM是TE和TM模式的输出功率)。图 6b图 6c分别是TE和TM模式的激射光谱。曲线的起伏可能来源于光经过偏振控制器时的干涉效应,λTEλTM是指TE和TM模式的激射波长。注入电流的增加导致增益芯片具有更大的增益,产生更高的模式增益差,TE模式的功率转换效率高于TM模式,对应的PER也将随注入电流增加而增加。高PER除了与双折射布喇格光栅的偏振依赖特性相关外,还与光栅对增益芯片的主偏振模式选择有关。

      图  6  a—输出功率与偏振角关系 b, c—TE模式和TM模式的激射光谱

      Figure 6.  a—relationship between output power and polarization angle b, c—laser spectra of TE mode and TM mode

    • 激光器的线宽特性表征采用延时自外差法[26],测量装置如图 7a所示。被测激光经光隔离器(isolator, ISO)后被90/10耦合器C1分束,10%的光经声光调制器(acoustic optical modulator, AOM),产生80 MHz的频移。90%的光由20 km光纤和法拉第旋转镜(Faraday rotating mirror, FRM)进行0.20 ms的时延,再通过环形器(circulator, CIR)注入合束器C2。移频降低了零频附近电子、振动和其它环境因素所引起的技术噪声对拍频的影响。FRM与CIR的组合可以实现2倍于光纤长度的延时,并减小光纤中的热扰动和机械扰动对激光偏振态的影响[27]。合束后由光电探测器(photodetector, PD)进行光电转换,再通过电频谱分析仪(electrical spectrum analyzer, ESA)获得拍频功率谱。

      图  7  a—延时自外差线宽测量系统 b—拍频功率谱及拟合曲线

      Figure 7.  a—linewidth measurement system of the delay self-heterodyne b—beat frequency power spectrum and fitting curves

      注入电流为300 mA时的拍频功率谱曲线及其拟合曲线如图 7b所示。图中的红色、绿色和蓝色细线分别对应Lorentz、Gaussian和Voigt拟合曲线。Voigt拟合是白噪声相关的Lorentz谱和1/f噪声相关的Gaussian谱的卷积[28],是在延迟光纤过长情况下减小1/f噪声对线宽测量影响的常用拟合曲线。本文中采用FRM与CIR的组合减小了相同光程所需一半长度的延迟光纤,减小了1/f噪声带来的频谱展宽,测量的拍频功率谱与Lorentz拟合曲线更为契合,是典型的Lorentz线型。通过读取Lorentz拟合曲线的3 dB带宽作为拍频测量结果,线宽最小值为2.69 kHz。拍频功率谱显示的单频频率成分,印证了前述激射光谱的单频输出状态。在后续工作中,作者将开展对单频激光频率稳定性、相位噪声与相对强度噪声的研究,以实现更为充分的线宽压窄和噪声抑制。

    • 本文中报道了一种基于保偏光纤布喇格光栅的近红外波段窄线宽ECSL。基于F-P等效谐振腔模型开展高偏振依赖增益芯片和双折射布喇格光栅的设计优化,实现了一种结构紧凑、工艺灵活、可批量制备的单频窄线宽半导体激光器的研制方法。利用延迟自外差拍频方法测得的洛伦兹线宽低至2.69 kHz。此外ECSL实现了54.46mW的最大输出功率、58.88 dB的SMSR和24.46 dB的PER。该激光器研制方法能够扩展到其它碱金属原子抽运所需的近红外波段,拓展其在量子精密测量领域的应用范围。

参考文献 (28)

目录

    /

    返回文章
    返回