-
小型化全光纤1030 nm激光器主要由半导体激光二极管(laser diode, LD)、光纤光栅、增益光纤、合束器、温控系统、驱动源等组成。激光抽运源采用915 nm的LD,增益光纤采用双包层掺镱光纤激光束的输出;激光驱动源为抽运源和温控装置提供稳定的供电和控制;温控装置用于控制激光抽运源温度,实现激光器的稳定运转。1030 nm光纤激光器由光路系统与电路控制系统、电源结构组成。激光器结构如图 1所示。激光器的主要技术指标如表 1所示。
表 1 激光器技术指标
Table 1. Technical specifications of laser
wavelength 1030 nm±3 nm out power >10 W power stability ±3% power supply DC 28 V volume 220 mm×270 mm×75 mm weight <7 kg operating temperature -55 ℃~45 ℃
小型化全光纤激光器壳体结构设计与分析
Miniaturization design and analysis of shell structure of all-fiber laser
-
摘要: 为了进一步优化小型化激光器的性能,在一般性原则的基础上设计了一款输出功率大于10 W、1030 nm高稳定性的小型化全光纤激光器壳体结构。壳体体积为220 mm×270 mm×75 mm,质量小于7 kg;壳体结构采用柔性支撑的减振设计,并可使激光器在温度-55 ℃~45 ℃的小型化平台下保持正常运行。利用有限元分析软件对激光器壳体进行了热分析与随机振动分析,按照设计图纸对小型化全光纤激光器样机进行了加工,并进行了实验验证。结果表明,激光器壳体在45 ℃下,激光器最热面温度为49.5 ℃,温升约为4.5 ℃,散热性能良好;在随机振动功率谱密度总均方根10.77 g的实验条件下,激光器最大3σ应力为171 MPa,随机振动响应均方根值仅为24.5 g,壳体结构力学性能良好;激光器壳体结构的散热性能以及力学性能完全满足设计要求,实验结果与仿真结果吻合度较高。该研究为小型化光纤激光器项目的具体实施提供了一定参考。Abstract: In order to further optimize the performance of miniaturized lasers, based on general principles, an all fiber laser housing structure with output power greater than 10 W and high stability at 1030 nm was designed for miniaturization. The shell volume was 220 mm×270 mm×75 mm, and the mass was less than 7 kg. The shell structure adopted a flexible support vibration reduction design, and could maintain normal operation of the laser on a miniaturized platform with temperatures ranging from -55℃ to 45℃. Thermal analysis and random vibration analysis were conducted on the laser casing using finite-element analysis software. The miniaturized all fiber laser prototype was processed according to the design drawings and experimentally verified. The results indicate that, at a temperature of 45℃, the hottest surface temperature of the laser is 49.5℃, with a temperature rise of about 4.5℃, indicating good heat dissipation performance. Under the random vibration condition of power spectrum density total root mean square 10.77 g, maximum of 3σ stress of the laser is 171 MPa, and the root mean square value of the random vibration response is only 24.5 g, indicating good mechanical properties of the shell structure. The heat dissipation and mechanical properties of the laser shell structure fully meet the design requirements, and the experimental results are in good agreement with the simulation results. This study provides a certain reference for the specific implementation of miniaturized fiber laser projects.
-
表 1 激光器技术指标
Table 1. Technical specifications of laser
wavelength 1030 nm±3 nm out power >10 W power stability ±3% power supply DC 28 V volume 220 mm×270 mm×75 mm weight <7 kg operating temperature -55 ℃~45 ℃ -
[1] 曲研, 宁超宇, 邹淑珍, 等. 纳秒脉冲掺镱全光纤激光器研究进展[J]. 红外与激光工程, 2022, 51(6): 20220055. QU Y, NING Ch Y, ZOU Sh Zh, et al. Recent advances in nanosecond-pulsed ytterbium-dopedall-fiberlasers[J]. Infraredand Laser Engineering, 2022, 51(6): 20220055(in Chinese) [2] STEPHEN M. Fiber-based, laser transmitter technology maturation program for global spectroscopic race-gas measurements[C]//2018 IEEE International Geoscience and Remote Sensing Symposium. New York, USA: IEEE Press, 2011: 32-38. [3] YU A W. Fiber lasers and amplifiers for space-based science and exploration[J]. Proceedings of the SPIE, 2012, 8237: 823713. doi: 10.1117/12.916069 [4] 林加强, 戴川生, 姚培军, 等. 单波长和双波长可调谐的掺镱锁模光纤激光器[J]. 激光技术, 2023, 47(3): 301-304. LIN J Q, DAI Ch Sh, YAO P J, et al. Tunable single-wavelength and dual-wavelength ytterbium-doped mode-locked fiber lasers[J]. Laser Technology, 2023, 47(3): 301-304 (in Chinese). [5] 梁虹, 魏芳, 孙延光, 等. 基于光纤光栅的1310 nm波段窄线宽混合集成外腔半导体激光器[J]. 中国激光, 2021, 48(20): 2001002. LIANG H, WEI F, SUN Y G, et al. A 1310 nm band narrow linewidth hybrid integrated exeranl cavity semiconductor laser on fiber Bragg gratings[J]. Chinese Journal of Lasers, 2021, 48(20): 2001002(in Chinese). [6] 宁雨竹, 张鹏, 何爽, 等. 1.7 μm波段光纤激光技术研究进展及应用[J]. 激光技术, 2023, 47(2): 154-170. NING Y Zh, ZHANG P, HE Sh, et al. Progress and applications of 1.7 μm waveband fiber laser[J]. Laser Technology, 2023, 47(2): 154-170 (in Chinese). [7] 张琳, 于淼, 郑也, 等. 小型化光纤激光器热仿真分析及优化设计[J]. 电子机械工程, 2022, 38(1): 40-44. ZHANG L, YU M, ZHENG Y, et al. Thermal simulation analysis and optimal design of miniaturized fiber laser[J]. Electro-mechanical Engineering, 2022, 38(1): 40-44 (in Chinese). [8] 彭兴文, 冯志刚, 李立波. 光纤激光器泵浦源有限元热分析[J]. 电子机械工程, 2015, 31(5): 27-30. PENG X W, FENG Zh G, LI L B. Thermal analysis for the pump source of fiber laser based on FEM[J]. Electro-mechanical Engineering, 2015, 31(5): 27-30(in Chinese). [9] 耿园园, 徐光烁, 谢桂娟, 等. 小型化激光测照器发射光轴不稳定度仿真分析[J]. 激光与红外, 2021, 51(5): 640-645. GENG Y Y, XU G Sh, XIE G J, et al. Simulation analysis of the instability of the emission axisof the airborne laser finder/illuminator[J]. Laser & Infrared, 2021, 51(5): 640-645 (in Chinese). [10] DORUK E, SLAVA L, FRANK K, et al. Highly reliable and efficient 1.5 μm-fiber-MOPA based, high power laser transmitter for space communication[J]. Proceedings of the SPIE, 20014, 9081: 90810G. [11] 李林, 王栋, 杨洪波, 等. 空间相机柔性减振支撑结构的优化设计[J]. 光学精密工程, 2016, 24(7): 1677-1684. LI L, WANG D, YANG H B, et al. Optimization design of flexible and damping support structure of space camera[J]. Optical and Precision Engineering, 2016, 24(7): 1677-1684 (in Chinese). [12] 杨美娟, 曾志华, 郝靖, 等. 某机载电子设备的热仿真及实验分析[J]. 机电工程技术, 2022, 51(11): 190-193. YANG M J, ZENG Zh H, HAO J, et al. Thermal simulation and test analysis of an airborne electronic equipment[J]. Mechanical & Electrical Engineering Technology, 2022, 51(11): 190-193(in Chinese). [13] 杨利伟, 李志来. 一种基于有限元分析的柔性支撑结构设计[J]. 长春理工大学学报(自然科学版), 2008, 25(1): 49-52. YANG L W, LI Zh L. Design of a flexible supporting structurebased on finite element analysis[J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2008, 25(1): 49-52(in Chinese). [14] 张小彤, 关佳. 无人机机载电子设备热设计与仿真[C]//第三十六届中国(天津)2022 IT、网络、信息技术、电子、仪器仪表创新学术会议论文集. 天津: 天津电子协会, 2022: 242-245. ZHANG X T, GUAN J. Thermal design and simulation of uav airborne electronic equipment[C]//Proceedings of the 36th China (Tianjin) 2022 IT, Network, Information Technology, Electronics, Instrumentation Innovation Academic Conference. Tianjin: Tianjin Institute of Electronics, 2022: 242-245 (in Chinese). [15] 刘亚萍, 彭绪金, 赵刚, 等. 重频50 Hz风冷YAG固体激光器热设计及仿真分析[J]. 激光技术, 2021, 45(6): 735-739. LIU Y P, PENG X J, ZHAO G, et al. The analysis of thermal design and its simulation for air cooled YAG laser with the repetition of 50 Hz[J]. Laser Technology, 2021, 45(6): 735-739 (in Chinese). [16] 何超. 某机载电子设备结构设计与仿真分析[J]. 舰船电子对抗, 2021, 44(3): 107-111. HE Ch. Structural design and simulation analysis of an airborne electronic equipment[J]. Shipboard Electronic Countermeasure, 2021, 44(3): 107-111(in Chinese). [17] 乔迁, 赵虎, 谢兰强. 全固态风冷式激光器散热设计及优化[J]. 激光技术, 2024, 48(2): 235-239. QIAO Q, ZHAO H, XIE L Q. Heat dissipation design and optimization of air cooled all solid state laser[J]. Laser Technology, 2024, 48(2): 235-239(in Chinese). [18] 祝耀昌, 石鹏颉, 程丛高, 等. 军用飞机小型化设备振动实验要求和有关问题的讨论(一): GJB 150.16/16A军用喷气式飞机和螺旋桨式飞机小型化设备和外挂的振动实验要求及对比分析[J]. 航天器环境工程, 2016, 33(2): 127-135. ZHU Y Ch, SHI P J, CHENG C G, et al. The vibration testing requirements and related problems formilitary aircraft equipment (Ⅰ): Vibration testing requirements and comparison of airborne equipment and external hanging of military jet and propeller aircraft in GJB 150.16/16A[J]. Spacecraft Environment Engineering, 2016, 33(2): 127-135(in Chinese). [19] 马新强, 成巍, 任远, 等. 基于ANSYS Workbench的激光器壳体结构优化设计[J]. 制造技术与机床, 2020(1): 30-33. MA X Q, CHENG W, REN Y, et al. Structural optimization design for laser surpport structure based on ANSYS Workbench[J]. Manufacturing Technology and Machine Tool, 2020(1): 30-33(in Chinese). [20] 贾光南, 李兵强. 某小型化电子设备的减振加固改进设计[J]. 机械设计与制造工程, 2023, 52(4): 11-15. JIA G N, LI B Q. Improvement design of vibration reduction and reinforcement for an airborne electronic equipment[J]. Machine Design and Manufacturing Engineering, 2023, 52(4): 11-15(in Chinese). [21] 高碧祥, 唐鹏, 赵瑾, 等. 某无人小型化电子设备随机振动实验故障分析[J]. 环境技术, 2023, 41(2): 29-34. GAO B X, TANG P, ZHAO J, et al. Fault analysis of random vibration test of electronic equipment on a UAV[J]. Envionmental Technology, 2023, 41(2): 29-34 (in Chinese). [22] 吴文志, 程林, 张平, 等. 某星载雷达电子设备的刚强度有限元分析[J]. 电子机械工程, 2016, 32(3): 56-59. WU W Zh, CHENG L, ZHANG P, et al. Finite element analysis for stiffness and strength of electronic equipment of a space-borne radar[J]. Electro-Mechanical Engineering, 2016, 32(3): 56-59(in Chinese).