-
为了验证本系统的实用性,本文中以PVC发泡板作为材料搭建0.5m×0.5m×0.3m的立体空间作为房间模型,系统的实验参量如表 1所示。
Table 1. Experimental parameters of system
name parameter value environmental parameters location 508, 5th floor, Xi’an University of Technology, temperature 23℃, environment no shading was used model size (length, width, height) 0.5m×0.5m×0.3m the power of the LED 3W photodetector photosensitive area: 3.5mm×3.5mm, response wavelength λ: 400nm~1100nm L 0.1m 本系统主要包括两个光发射端模块和光接收端模块,光发射端模块1主要由温湿度传感器、气压传感器、STM32以及LED调制驱动电路组成;光接收端模块1主要由光电探测器和前置放大器以及主放大器和判决器组成。下行链路将温湿度传感器模块,气压传感器模块采集的数据通过STM32加载到白光LED驱动电路上,实现光源LED的OOK调制,通过LED的高频闪烁从而实现信号由电信号到光信号的转换[14]。光信号经过大气到达接收端后,通过接收端2探测到光信号,将光信号转换成电流信号,实现信号由光信号到电信号的转换,然后经过前置放大器、主放大器和判决器等一系列后续信号处理电路后,经TTL转USB后实现原始信号的恢复[15],最终将通信的信息显示到上位机界面上,光发射端模块2主要由STM32以及LED驱动调制电路组成,光接收端模块2与光接收端模块1相同,上行链路将上位机界面获取的数据通过STM32加载到白光LED驱动电路的光发射端2上通过接收端1探测到光信号,将光信号转换为电信号,然后经过前置放大器、主放大器和判决器处理后由上行链路的STM32接收,实现数据的实时反馈从而控制各电机开关从而实现对室内环境的自动调节功能。可见光环境监测实物系统如图 12所示,该系统实现了基于可见光的无线数据传输的两个终端之间的双工通信。
-
为了体现本系统的可实用性,本文中设计了上位机可视化界面,如图 13所示。系统可进行温度、湿度、气压等参量配置,可实现数据的实时采集与显示,并通过数据库实现信息的存储及历史数据回调分析。结合软硬件完成了基于可见光室内环境参量的实时无线数据传输、显示与储存,实现电磁敏感环境下的可见光智能照明及环境监控功能。
为了充分利用本系统的数据库功能,建立了如图 14所示的离线分析功能。可以看出,本系统既可以实现环境参量的实时调控,也可以实现历史数据的离线分析,可有效地应用于电磁敏感环境的数据采集传输及分析系统中。
电磁敏感场景可见光智慧照明及环境监测系统
Intelligent visible lighting and environmental monitoring system in electromagnetic sensitive scene
-
摘要: 传统无线通信的方式在电磁敏感场景下难免会对信号造成干扰, 为了不影响通信系统的稳定性与可靠性, 结合可见光具有对电磁不敏感的特性, 搭建了以可见光作为信息载体在电磁敏感环境下实现兼顾照明的智慧系统。首先采用以0.5m×0.5m×0.3m的立体空间作为房间模型、对室内光源布局进行合理的布局优化方法, 使其达到国际化室内照明标准; 其次设计了系统的上下行链路以及信号帧结构, 实现了稳定的信息传输; 最后搭建了系统的实物模型, 并对系统进行了调试。结果表明, 本系统可稳定地实现照明及室内环境参量的实时监控与数据传输, 误比特率低于10-6, 能够稳定通信10h以上。该研究为大场景的布设参量提供了参考。Abstract: Traditional wireless communication will inevitably interfere with signals in electromagnetic sensitive scenarios. In order not to affect the stability and reliability of communication systems, combined with insensitive characteristic of visible light to electromagnetic field, a smart and lighting system with visible light as information carrier was built in electromagnetic sensitive environment. Firstly, 3-D space of 0.5m×0.5m×0.3m was used as room model and reasonable layout optimization method of indoor light source was carried out to make it meet the international indoor lighting standards. Secondly, the upstream and downlink of system and the signal frame structure were designed. The stable information transmission was realized. Finally, the physical model of the system was built and the system was debugged. The results show that the system can stably realize real-time monitoring and data transmission of lighting and indoor environment parameters. Bit error rate is less than 10-6. It can stably communicate for more than 10h. This study provides a reference for the layout parameters of large scenes.
-
Table 1. Experimental parameters of system
name parameter value environmental parameters location 508, 5th floor, Xi’an University of Technology, temperature 23℃, environment no shading was used model size (length, width, height) 0.5m×0.5m×0.3m the power of the LED 3W photodetector photosensitive area: 3.5mm×3.5mm, response wavelength λ: 400nm~1100nm L 0.1m -
[1] DING D Q, KE X Zh. Visible light communication and its key technologies [J]. Semiconductor Optoelectronics, 2006, 27(2): 114-117(in Chinese). [2] LIU H Zh, LU X X, WANG F Q, et al. Current situation and deve-lopment of visible optical communication for white LED lighting [J]. Optical Communication Technology, 2009, 33(7):56-59(in Chin-ese). [3] ARNON S. Visible light communication[M]. Cambridge, UK: Cambridge University Press, 2015:55-61. [4] CHI N, LU X Y, WANG C, et al. High-speed visible optical communication based on LED[J]. Chinese Journal of Lasers, 2017, 44(3): 030001(in Chinese). [5] WU S, WANG H, YOUN C H. Visible light communication for 5G wireless networking system: From fixed to mobile communications [J]. IEEE Network, 2014, 28(6): 41-45. doi: 10.1109/MNET.2014.6963803 [6] GAO Y, KE X Zh. Multidimensional coding in visible optical communication [J]. Chinese Journal of Lasers, 2015, 42(2):0205001(in Chinese). doi: 10.3788/CJL201542.0205001 [7] ZHAO L, PENG K. Optimization of indoor visible light communication light source layout based on white light emitting diode [J]. Acta Optica Sinica, 2017, 37(7): 0706001(in Chinese). doi: 10.3788/AOS201737.0706001 [8] DING J P, HUANG Zh T, JI Y F. Evolutionary algorithm based uniform received power & illumination rendering for indoor visible light communication[J]. Journal of the Optical Society of America, 2012, A29(6):971-979. [9] YUAN Q. International commission on illumination lighting standards—indoor workplace lighting [J].Lighting Engineering, 2002, 19(4): 55-60(in Chinese). [10] DING D Q, KE X Zh. A new indoor VLC channel model based on reflection[J].Optoelectronics Letters, 2010, 6(4):295-298. doi: 10.1007/s11801-010-0028-1 [11] DING D Q, KE X Zh. Study on mathematical luminescence model of a universal white LED [J]. Acta Optica Sinica, 2010, 30(9): 2536-2540(in Chinese). doi: 10.3788/AOS20103009.2536 [12] MAO Ch G, ZHANG L B, ZHENG W L, et al. Research on the application of MySQL database in online monitoring system [J]. Electronic World, 2012, 18(4):10-11(in Chinese). [13] GAO K, SUN J H. Research on preamplifier circuit of photodetector [J]. Microcomputer and Application, 2011, 30(18):86-88(in Chinese). [14] WANG Y, TAO L, CHI N. High speed WDM VLC system based on multi-band cap64 with weighted pre-equalization and modified CMMA based post-equalization[J]. Communications Letters, 2014, 18(10): 1719-1722. doi: 10.1109/LCOMM.2014.2349990 [15] ZHAO L, PENG K. Design and implementation of indoor duplex short-distance real-time VLC system [J]. Laser Journal, 2017, 38(6):112-115(in Chinese).