-
差分吸收激光雷达是利用待测气体对不同波长激光吸收特性的差异来进行气体浓度测量的一种实验装置。差分吸收激光雷达向大气中发射两束激光脉冲,其中一束激光脉冲波长位于待测气体吸收峰,记为λon,另一束激光脉冲波长位于待测气体吸收谷,记为λoff。λon和λoff数值接近,有效消除回波信号中其它干扰气体以及气溶胶的影响,可近似认为回波信号的差异只是由待测气体的吸收特性不同所导致。
在距离z处待测气体分子的数密度N(z)可表示为[10]:
$\begin{array}{l} N(z) = - \frac{1}{{2\left[ {\sigma \left( {{\lambda _{{\rm{on}}}}} \right) - \sigma \left( {{\lambda _{{\rm{off}}}}} \right)} \right]}} \times \\ \quad\quad\frac{{\rm{d}}}{{{\rm{d}}z}}\left[ {\ln \frac{{P\left( {{\lambda _{{\rm{on}}}},z} \right)}}{{P\left( {{\lambda _{{\rm{off}}}},z} \right)}}} \right] + B - {E_{\rm{a}}} - {E_{\rm{m}}} \end{array} $
(1) 式中,σ(λon)为待测气体分子在波长为λon的消光截面(cm2),σ(λoff)为待测气体分子在波长为λoff的消光截面(cm2),P(λon, z)是波长为λon的激光脉冲在距离z处的回波信号的强度(W),P(λoff, z)是波长为λoff的激光脉冲在距离z处的回波信号的强度(W),B, Ea和Em分别为大气后向散射作用项、大气气溶胶消光作用项以及空气分子消光作用项。
因为λon≈λoff, 所以B, Ea和Em这3项误差作用项可忽略不计,则(1)式可简化为:
$\begin{array}{l} N(z) = - \frac{1}{{2\left[ {\sigma \left( {{\lambda _{{\rm{on}}}}} \right) - \sigma \left( {{\lambda _{{\rm{off}}}}} \right)} \right]}} \times \\ \quad\quad\quad\quad\frac{{\rm{d}}}{{{\rm{d}}z}}\left[ {\ln \frac{{P\left( {{\lambda _{{\rm{on}}}},z} \right)}}{{P\left( {{\lambda _{{\rm{off}}}},z} \right)}}} \right] \end{array} $
(2) 在实际计算情况下,考虑到差分吸收激光雷达所测得的回波信号为离散信号,因此取一段差分距离Δz进行积分计算,则(2)式转变为如下形式:
$N(z) = - \frac{1}{{2\Delta z\Delta \sigma }}\ln \left[ {\frac{{P\left( {{\lambda _{{\rm{on}}}},z + \Delta z} \right)P\left( {{\lambda _{{\rm{off}}}},z} \right)}}{{P\left( {{\lambda _{{\rm{off}}}},z + \Delta z} \right)P\left( {{\lambda _{{\rm{on}}}},z} \right)}}} \right] $
(3) 将原始回波数据扣除背景噪声以及降噪处理后,利用(3)式进行反演计算,将得出的结果作近一步平滑处理,可得出待测气体在探测路径上的最终浓度廓线分布结果。
本文中采用中国科学院安徽光学精密机械研究所研制的差分吸收激光雷达系统探测,其基本结构图如图 1所示。该系统的硬件构造主要包括激光脉冲束的发射单元、回波信号接收单元以及信号采集单元。利用两台Nd:YAG固体激光器抽运4台染料激光器,经二阶谐波产生(second-harmonic generation, SHG)可产生测量SO2浓度分布所需的λ1, on=300.05nm, λ1, off=301.5nm两束激光脉冲和测量NO2浓度分布所需的λ1, on=448.1nm, λ1, off=446.6nm的两束激光脉冲,回波信号由接收单元收集,采集单元存储。系统空间分辨率为15m,激光脉冲频率为10Hz,时间分辨率为1min。
激光雷达观测淮南大气SO2和NO2浓度廓线实例分析
Analysis of SO2 and NO2 concentration profiles in Huainan detected by a lidar
-
摘要: 为了初步探究淮南地区大气SO2及NO2的不同时空分布特征,采用自研的差分吸收激光雷达系统测得某地(淮南地区)部分月份大气SO2及NO2气体浓度分布廓线,并选取其中典型实例从气体水平浓度日变化、垂直浓度变化以及水平浓度月变化3个方面分析了SO2及NO2分布特点。结果表明,同一天夜晚时刻,SO2及NO2气体浓度大于下午时刻的气体浓度;SO2及NO2气体垂直浓度随高度增加呈递减趋势;SO2及NO2气体水平浓度月变化变现为冬季月份气体浓度最大,夏季月份气体浓度最小,春、秋季月份次之。SO2及NO2浓度变化特征是人群活动和气象条件变化共同作用的结果。Abstract: In order to preliminarily explore the spatial and temporal distribution characteristics of SO2 and NO2 in the atmosphere of Huainan area, one self-developed differential absorption lidar system was used to measure the distribution profiles of SO2 and NO2 concentrations in the atmosphere of a certain Huainan area in some months. The typical examples were selected and the distribution characteristics of SO2 and NO2 were analyzed from three aspects of diurnal variation of horizontal concentration, variation of vertical concentration and monthly variation of horizontal concentration of gases. The results show that, the concentration of SO2 and NO2 at night on the same day was higher than that at afternoon. The vertical concentration of SO2 and NO2 decreased with the increase of altitude. The monthly variation of horizontal concentration of SO2 and NO2 gas is the highest in winter and the lowest in summer, the second in spring and autumn months. The variation of SO2 and NO2 concentration is the result of the interaction of population activities and meteorological conditions.
-
Key words:
- atmospheric optics /
- SO2 /
- NO2 /
- differential absorption lidar
-
[1] LIU Q. Environmental chemistry[M]. Beijing:Chemical Industry Press, 2006:103-116(in Chinese). [2] TANG X Y, ZHANG Y H, SHAO M, et al. Atmospheric environmental chemistry[M].2nd ed.Beijing:Higher Education Press, 2006:40-44(in Chinese). [3] YAN P, LI X Sh, LUO Ch, et al. Observational analysis of surface O3, NOx and SO2 in China[J].Quarterly Journal of Applied Meteo-rology, 1997, 8(1):53-61(in Chinese). [4] CHATTERTON T, DORLING S, LOVETT A, et al. Air quality in Norwich, UK multi-scale modelling to assess the significance of city, county and regional pollution sources[M]. Urban Air Quality: Mea-surement, Modelling and Management. Springer Netherlands, 2000, 15(3): 425-433. [5] MENG Y J, CHENG C L. Impact of surface synoptic situations on air pollution in Beijing area[J]. Meteor Mon, 2001, 28(4):42-46(in Chinese). [6] WEI Y X, TONG Y Q, YIN Y, et al. The variety of main air pollutants concentration and its relationship with meteorological condition in Nanjing city[J]. Transactions of Atmospheric Sciences, 2009, 32(3):451-457(in Chinese). [7] HUANG J, HU Sh X, CAO K F, et al. Design of three dimensional scanning control system for air pollution monitoring Lidar based on LabVIEW[J]. Journal of Atmospheric and Environmental Optics, 2013, 8(2):124-129(in Chinese). [8] LIN J M, CAO K F, HU Sh X, et al. The experiment study of SO2 measurement by differential absorption Lidar[J]. Infrared and Laser Engineering, 2015, 44(3):872-879(in Chinese). [9] LIU Q W, WANG X B, CHEN Y F, et al. Detection of atmospheric NO2 concentration by differential absorption Lidar based on dye lasers[J]. Acta Optica Sinica, 2017, 37(4):428004(in Chinese). [10] WEITKAMP C. Lidar range resolved optical remote sensing of the atmosphere[M]. New York: Springer-Verlag New York Inc., 2005: 187-209. [11] LIU X H, HONG Zh X, LI J L, et al. Meteorological and chemical parameters determining the photochemical air pollution in Beijing[J]. Climatic and Environmental Research, 1999, 4(3):231-236(in Chinese). [12] YIN D Zh, HONG Zh X. Study on the boundary layer structure and parameters under heavy pollution conditions in Beijing[J]. Climatic and Environmental Research, 1999, 4(3):303-307(in Chinese). [13] MA Zh Q, WANG Y S, SUN Y, et al. Characteristics of vertical air pollutants in Beijing[J]. Research of Environmental Sciences, 2007, 20(5):1-6(in Chinese). [14] CA G L, ZHANG X Y, GONG S L, et al. Emission inventories of primary particles and pollutant gases for China[J]. Chinese Science Bulletin, 2011, 56(8):781-788. doi: 10.1007/s11434-011-4373-7 [15] STRETS D G, BOND T C, CARMICHAEL G R, et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D21):GTE30-1. [16] HE J J, WU L, MAO H J, et al. Impacts of meteorological conditions on air quality in urban Langfang, Hebei Province[J]. Research of Environmental Sciences, 2016, 29(6):791-799(in Ch-inese). [17] ZHANG L, LIAO H, LI J P. Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China[J]. Journal of Geophysical Research Atmospheres, 2010, 115(7):2232-2232. [18] WANG Zh B, FANG Ch L, XU G, et al. Spatial-temporal characteristics of the PM2.5 in 2014[J]. Acta Geographica Sinica, 2015, 70(11):1720-1734(in Chinese).