-
图 1为金属零件有限元模型。其中熔覆层尺寸为2.2mm×30mm×0.6mm,基材尺寸为50mm×50mm×8mm。熔覆层与基材先采用solid70单元的网格划分进行温度场分析,当进行应力场分析时将solid70单元转换为solid45单元来进行结构分析。在熔覆层及其附近采用小的网格划分,局部放大如图 1b所示,在远离熔覆层的区域选择较大的网格划分。为了得到更准确的结果,网格更细、熔覆层最小的单元尺寸为0.3mm×0.3mm×0.1mm。
激光增材制造过程是一个复杂的工艺过程,其影响因素较多,不能一一考虑。为了简化计算,本文中建立的模型遵从如下几个假设[8]:(1)基材与金属粉末各向同性;(2)熔覆层表面与空气的对流换热系数一定;(3)不考虑基材与金属粉末的汽化作用;(4)基材与金属粉末的屈服准则采用von Mises准则;(5)金属材料的塑性区段满足流动准则和硬化准则;(6)热源及产生的光斑各项始终性能保持不变;(7)在控制变量的实验中忽略变量改变对其它值的影响。
模拟激光增材制造过程中材料的熔覆行为,主要是通过ANSYS中的“生死单元法”[9]来实现的。所谓“生死单元法”,即是将该单元的刚度(或传导,或其它分析特性)矩阵乘以一个很小的因子,其默认值为1.0×10-6,从而不对载荷向量生效(但仍然在单元载荷的列表中出现)。同样,被杀死单元的质量、阻尼、比热和其它类似效果也设为0值,被杀死单元的质量和能量将不包括在模型求解结果中,单元的应变在“杀死”的同时也将设为0。当移动热源的光斑覆盖到该单元位置时激活该单元,以此来模拟金属粉末受热与基材形成熔池的过程。因此,只要根据热源移动的路径逐个激活单元,并加载上与热源相对应的生热率,就可以模拟整个激光增材制造过程。
-
激光器产生的热流密度呈现正态高斯分布,故本文中采用移动高斯热源模型与实际情况一致。高斯热源模型表达式为[10]:
$ Q=\left( 3\eta \frac{P}{\text{ }\!\!\pi\!\!\text{ }\ {{r}^{2}}} \right)\text{exp}\left( -3\frac{{{R}^{2}}}{{{r}^{2}}} \right)~ $
(1) 式中, Q为在光斑内任意点的热流密度;η为激光利用率;P为激光功率;r为激光光斑半径;R为任意点到热源中心的距离。
激光器在产生瞬时高能热源的同时,随着时间而快速纵向移动,快冷快热。因此热源模型需要定义空间与时间变量。
定义位于熔覆层表面的移动热源中心点(x0, y0):
$ \left\{ \begin{align} &{{x}_{0}}=0 \\ &{{y}_{0}}=vt~ \\ \end{align} \right.\text{ } $
(2) 式中, v为激光移动速率;t为时间。
计算熔覆层表面上任意一点(x,y)到热源中心点的距离:
$ R=\sqrt{{{\left( {{x}_{0}}-x \right)}^{2}}+{{\left( {{y}_{0}}-y \right)}^{2}}} $
(3) 所以熔覆层表面上任意一点(x,y)的热流密度q可以表示为:
$ \left\{ \begin{align} &q=Q, \left( R\le r \right) \\ &q=0, (R>r)~ \\ \end{align} \right.\text{ } $
(4) -
金属材料的热物性参量随着温度的变化往往呈现非线性。本文中基材与粉末均为316L不锈钢(00Cr17Ni14Mo2),通过查阅有关文献[11-13],运用插值法和外推法,可以获取所需温度范围内材料的非线性热物性参量和力学性能参量, 如表 1所示。其中c为比热容,κ为导热系数, ρ为密度,E为弹性模量, al为热膨胀系数, v为泊松比, σ为屈服应力,E′为切线模量。
Table 1. Thermophysical parameters of 316L stainless steel
temperature/K c/(J·kg-1·K-1) κ/(W·m-1·K-1) ρ/(kg·m-3) E/ Pa al/K-1 v σ/Pa E′/ Pa 293 477 12.6 8 2.21×1011 15.3×10-6 0.3 0.297×109 2.21×1010 473 515 16.3 8 1.96×1011 15.3×10-6 0.3 0.221×109 1.96×1010 673 550 19.8 8 1.86×1011 15.3×10-6 0.3 0.202×109 1.86×1010 873 582 22.6 8 973 611 23.9 8 1.55×1011 15.3×10-6 0.3 0.099×109 1.55×1010 1073 640 25.5 8 1173 669 26.4 8 1273 675 27.5 8 0.50×1011 15.3×10-6 0.3 0.089×109 0.50×1010 1473 739 29.7 8 0.35×1011 15.3×10-6 0.3 0.059×109 0.35×1010 1703 760 31.7 8
激光增材制造工艺参量对熔覆层残余应力的影响
Influence of process parameters on the residual stress of cladding layers by laser additive manufacturing
-
摘要: 为了探究工艺参量对激光增材制造熔覆层残余应力影响规律,采用数值模拟及实验验证相结合的方法,取得了激光增材制造熔覆层截面深度方向上沿扫描路径y方向和垂直扫描路径x方向上残余应力的分布规律,并在此基础上进行了不同工艺参量对y方向和x方向应力场影响分析。结果表明,在一定参量范围内,随着熔覆层深度的增加,y方向残余应力均表现为拉应力,呈现先增大后降低趋势,在熔覆层顶部约0.2mm处存在最大拉应力为262MPa;x方向由压应力逐步转变为拉应力,其略小于y方向应力值;随着激光功率的增大,x方向残余应力逐渐增大,y方向残余应力逐渐降低;随着扫描速率的增大,x方向的残余应力将随之减小,而y方向的残余应力将随之增大;随着送粉量的增大,x方向和y方向的残余应力均将随之增大。此研究为降低激光增材制造熔覆层残余应力及工艺参量优化选择提供了指导。Abstract: In order to study influence rules of process parameters on residual stress distribution of cladding layers, the numerical simulation and experiments test were adopted.The residual stress distribution rules in depth direction of cladding layer section along the scanning path direction (y-direction) and the vertical scanning path direction (x-direction) were obtained.At the same time, the stress field was also analyzed under different process parameters.The results show that the residual stress of y-direction is tensile stress, which is first increasing and then decreasing, and the maximum tensile stress is 262MPa at 0.2mm position from the top of cladding layer.The residual stress of x-direction is from compressive stress converted gradually to tensile stress, which is less than the value of the y-direction stress with the depth of the cladding layer increasing.The x-direction residual stress gradually increases and the y-direction residual stress gradually decreases with the increasing of laser power.The x-direction residual stress gradually decreases and the y-direction residual stress gradually increases with the increasing of scanning speed.The x-direction residual stress and the y-direction residual stress decreases with the increasing of powder mass flow rate.Meanwhile it can provide a method for decreasing residual stress and optimizing process parameters.
-
Key words:
- laser technique /
- residual stress /
- numerical simulation /
- process parameter /
- additive manufacturing
-
Table 1. Thermophysical parameters of 316L stainless steel
temperature/K c/(J·kg-1·K-1) κ/(W·m-1·K-1) ρ/(kg·m-3) E/ Pa al/K-1 v σ/Pa E′/ Pa 293 477 12.6 8 2.21×1011 15.3×10-6 0.3 0.297×109 2.21×1010 473 515 16.3 8 1.96×1011 15.3×10-6 0.3 0.221×109 1.96×1010 673 550 19.8 8 1.86×1011 15.3×10-6 0.3 0.202×109 1.86×1010 873 582 22.6 8 973 611 23.9 8 1.55×1011 15.3×10-6 0.3 0.099×109 1.55×1010 1073 640 25.5 8 1173 669 26.4 8 1273 675 27.5 8 0.50×1011 15.3×10-6 0.3 0.089×109 0.50×1010 1473 739 29.7 8 0.35×1011 15.3×10-6 0.3 0.059×109 0.35×1010 1703 760 31.7 8 -
[1] WANG H M. High performance metal component manufacturing technology opens a new chapter in national defense[J]. Defence Manu-facturing Technology, 2013, 6(3):5-7(in Chinese). [2] DUTTA B, SINGH V, NATU H, et al. Direct metal deposition[J]. Advanced Materials & Processes, 2009, 167(3):29-31. [3] JIA Sh, FU G Y, SHI S H, et al. Laser direct forming research of irregular-section entity base on inside-laser powder feeding and robotic technology[J]. Laser Technology, 2016, 40(5):654-659(in Chinese). [4] YANG J, CHEN J, YANG H O, et al. Experimental study on residual stress distribution of laser rapid forming process[J]. Rare Metal Materials and Engineering, 2004, 33(12):1304-1307(in Chin-ese). [5] KONG F, KOVACEVIC R. Modeling of heat transfer and fluid flow in the laser multilayered cladding process. Metallurgical & Materials Transactions, 2010, B41(6):1310-1320. [6] DAVIM J P, OLIVEIRA C, CARDOSO A. Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA)[J]. Materials and Design, 2008, 29(2):554-557. doi: 10.1016/j.matdes.2007.01.023 [7] LIU X M, GUAN Z Z. The relationship between the process parameter of laser cladding by powder feeding method and the laser layer parameters[J]. Transactions of Metal Heat Treatment, 1998, 19(3):29-34(in Chinese). [8] SHI L K, GAO S Y, XI M Z, et al. Finite element simulation for laser direct depositing processes of metallic vertical thin wall parts[J]. Acta Metallurgica Sinica, 2006, 42(5):454-458(in Chinese). [9] ZHANG G Z, HU R X, CHEN J G. ANSYS 10.0 thermodynamic finite element analysis example course[M]. Beijing:China Machine Press, 2007:77-82(in Chinese). [10] LIU Sh H, WAN P T, HU L G, et al. State-of-the-art research on the temperature field in laser welding[J]. China Mechanical Engineering, 2001, 12(4):478-481(in Chinese). [11] TAN Zh, GUO G W. Thermal properties of engineering alloys[M]. Beijing:Metallurgical Industry Press, 1996:4-78(in Chinese). [12] JIANG W, YAHIAOUI K, HALL F R. Finite element predictions of temperature distributions in a multipass welded piping branch junction[J]. Journal of Pressure Vessel, 2005, 127(1):7-12. [13] GU J Q, LUO F, YAO J H. Numerical simulation of residual stress during lser cladding[J]. Laser & Optoelectronics Progress, 2010, 47(10):81-86(in Chinese). [14] HUANG W D, LIN X, CHEN J, et al. Laser additive manufacturing[M] Xi'an:Northwestern Polytechnical University Press, 2007:250-251(in Chinese). [15] ZHU G X, LI D C, ZHANG A F, et al. The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition[J]. Optics & Laser Technology, 2012, 44(2):349-356.