-
图 1是由衬底、波导层、光栅层组成的导模共振光栅1-D结构图。ns是衬底的折射率,nw是波导层折射率,dw波导层厚度,nh是光栅材料折射率,nl是低折射率材料的折射率,h是光栅厚度,t是光栅条宽,Λ是光栅周期,占空比η=t/Λ,θ是入射角。选择制作光栅的材料是MgF2,其中nh=1.38,低折射率材料就是空气, 故nl=1。波导层的制作材料是HfO2,nw=1.97。衬底选择的是SiO2,其折射率ns=1.46。
为了确定导模共振光栅的共振波长,首先将光栅等效成一层薄膜,然后利用波导理论计算确定共振位置。而将光栅等效成一层薄膜后,必须通过等效介质理论计算等效薄膜的等效折射率neff不然无法进行后面的波导理论计算。等效折射率的1阶近似为:
$ {n_{{\rm{eff, T}}{{\rm{E}}_{\rm{1}}}}} = {[\left( {1 - \eta } \right){n_{\rm{l}}}^2 + \eta {n_{\rm{h}}}^2]^{\frac{1}{2}}} $
(1) $ {n_{{\rm{eff, T}}{{\rm{M}}_{\rm{1}}}}} = {\left[ {\frac{{{n_{\rm{l}}}^2{n_{\rm{h}}}^2}}{{(1 - \eta ){n_{\rm{h}}}^2 + \eta {n_{\rm{l}}}^2}}} \right]^{\frac{1}{2}}} $
(2) 一些文献中可能会用泰勒公式继续展开(1)式和(2)式,计算周期和波长对等效折射率的影响,但因为周期和波长只有在2阶展开才能体现它们对等效折射率的影响,因此它们其实对等效折射率影响是极其微小,可以忽略[20]。在此不再讨论。图 2是占空比对光栅等效折射率的影响。从图中可知,除了占空比为0和1外,光栅对于TE和TM偏振的等效折射率是不一样的,而且TE偏振的等效折射率比TM的大。
得出光栅等效成薄膜的等效折射率后,可以利用波导理论去计算共振的波长。首先将入射平面波(TE偏振)在光栅层控制光波传播的耦合波方程(3)式和一般平面波导方程(4)式相比:
$ \begin{array}{l} \frac{{{\rm{d}}{E_i}^2(z)}}{{{\rm{d}}{z^2}}} + \left[ {{k_0}^2{n_{{\rm{eff, T}}{{\rm{E}}_{\rm{1}}}}}^2 - {k_0}^2{{\left( {{n_{\rm{l}}}{\rm{sin}}\theta - {\rm{i}}\frac{\lambda }{\Lambda }} \right)}^2}} \right]{E_i}\left( z \right) + \\ \;\;\;\;\;\;\;\;{k_0}^2\Delta \varepsilon \sum\limits_{j = 1}^\infty {\frac{{{\rm{sin}}(h{\rm{ \mathsf{ π} }}\eta )}}{{h{\rm{ \mathsf{ π} }}}}\left[ {{E_{i - j}}\left( z \right) + {E_{i + j}}\left( z \right)} \right] = 0} \end{array} $
(3) $ \frac{{{\rm{d}}{E^2}(z)}}{{{\rm{d}}{z^2}}} + \left[ {{k_0}^2{n^2} - {\beta ^2}} \right]E(z) = 0 $
(4) 式中,Ei(z)是第i级衍射波的振幅,k0=2π/λ,λ为真空入射光波长,(3)式中最后一项是耦合项。根据平面波导理论可知,β是在平面波导的中所被支持的导波模,可以得出导模共振光栅所支持的导波模即βi=k0(nlsinθ-iλ/Λ)。通过(3)式和(4)式仅推出了光栅所支持的TE偏振的导波模,若要使所支持的导波模存在,则必须是导模共振光栅波导结构的等效折射率neff=βi/k0满足(5)式,同时也可以得出光栅的TE和TM对应的平面波导本征方程(6)式和(7)式。
$ {n_{\rm{s}}} \le \left| {{n_{{\rm{eff}}}}} \right| = \left| {{n_{\rm{l}}}{\rm{sin}}\theta - {\rm{i}}\lambda /\Lambda } \right| < {\mathit{n}_{\rm{w}}} $
(5) $ {\rm{tan}}({k_i}{d_{\rm{w}}}) = \frac{{{k_i}({\gamma _i} + {\delta _i})}}{{{k_i}^2 - {\gamma _i}{\delta _i}}} $
(6) $ {\rm{tan}}({k_i}{d_{\rm{w}}}) = \frac{{{n_w}^2{k_i}({n_{{\rm{eff, T}}{{\rm{E}}_{\rm{1}}}}}^2{\gamma _i} + {n_{\rm{s}}}^2{\delta _i})}}{{{n_{{\rm{eff, T}}{{\rm{E}}_{\rm{1}}}}}^2{n_{\rm{s}}}^2{k_i}^2 - {n_{\rm{w}}}^4{\gamma _i}{\delta _i}}} $
(7) 式中,${k_i} = {({n_w}^2{k_0}^2- {\beta _i}^2)^{\frac{1}{2}}}$, ${\gamma _i} = {({\beta _i}^2 - {n_{{\rm{eff}}, {\rm{T}}{{\rm{E}}_1}}}^2{k_0}^2)^{\frac{1}{2}}}$, ${\delta _i} = {({\beta _i}^2 - {n_{\rm{s}}}^2{k_0}^2)^{\frac{1}{2}}}$。根据(6)式和(7)式可以得出采用图 1中的导模共振光栅波导结构实现共振的位置,如图 3所示。图中的每一个点即光栅所支持的导波模也是光栅波导结构所激发的导波模。图 3表示的是在光栅周期Λ=500nm、占空比为0.5、厚度h=λ/(4neff),想要激发0阶~2阶模波导层所需的厚度和共振波长的关系。对于TE偏振,若要在波长Λ=850nm处实现共振,0阶导波模(m=0)波导层厚度应为dw=217nm,而1阶模(m=1)和2阶模(m=2)对应的波导层厚度dw分别为644nm和1070nm;对于TM偏振,若要在波长Λ=850nm处实现共振,0阶导波模(m=0)波导层厚度应为dw=310nm,而1阶模(m=1)和2阶模(m=2)对应的波导厚度dw分别为737nm和1160nm。
随后利用严格耦合波法验证由(6)式和(7)式计算得来的波导层厚度能否使0阶模~2阶模均在波长850nm处实现导模共振,计算结果如图 4所示(以TE偏振为例)。从图 4中可以看出,在TE偏振下波导层厚度分别为217nm,644nm,1070nm时,采用图 1结构的导模共振光栅均在波长λ=850nm处实现了共振。
导模共振光栅参量对共振波长和线宽的影响研究
Research of effect of guide-mode resonance grating parameters on resonance wavelength and line width
-
摘要: 为了能够设计出具有反射功能的导模共振光栅,采用光栅的等效介质理论、平面波导理论以及严格耦合波法,进行了理论分析和实验验证,设计了在TE偏振下波长850nm处具有反射共振的导模共振光栅。利用严格耦合波法,计算并分析了光栅参量、入射角以及波导层厚度对共振波长和线宽的影响。结果表明,随着占空比的增大,共振波长会红移,而共振线宽会随着占空比的增大先增后减,占空比为0.5时线宽能达到最宽;共振波长会随着光栅周期和波导层厚度的增大而增大,但线宽几乎不变,当周期从490nm增加到520nm时,共振波长红移了将近50nm,而当波导层厚度从217nm增加到251nm时,共振波长红移了将近25nm;光栅厚度变化对共振波长和共振线宽影响很微弱,当入射角是垂直入射时仅有一个共振峰,但是当入射角不为0°时会出现两个共振峰,并且两个共振波长随着入射角度的变大一个会蓝移而另一个则红移。该研究为实际制备反射导模共振光栅提供了理论指导。Abstract: In order to design guided mode resonance gratings with reflection function, based on equivalent medium theory, planar waveguide theory and rigorous coupled wave analysis, theoretical analysis and experimental verification were carried out, guide-mode resonance gratings were designed to realize reflection resonance on 850nm (TE).The effects of grating parameters, incident angle and thickness of waveguide layer on resonance wavelength and linewidth were calculated by rigorous coupled wave method.The results show that, with the increase of duty cycle, resonance wavelength will shift red and resonance linewidth increases first and then decreases with the increase of duty cycle.When duty cycle is 0.5, line width can reach the widest.Resonant wavelength increases with the increase of grating period and waveguide layer thickness.But the line width is almost unchanged.When the period increases from 490nm to 520nm, resonance wavelength is red-shifted by nearly 50nm.When the thickness of waveguide layer increases from 217nm to 251nm, resonance wavelength is red-shifted by nearly 25nm.The influence of grating thickness on resonance wavelength and resonance linewidth is very weak.When the incident angle is perpendicular, there is only one resonance peak.But when the incident angle is not 0°, there will be two resonance peaks.And with the increase of incident angle, one resonance wavelength will be blue-shifted while the other will be red-shifted.This study provides theoretical guidance for practical preparation of reflective guided mode resonance gratings.
-
Key words:
- gratings /
- resonance /
- rigorous coupled wave analysis /
- waveguide layer
-
-
[1] LI Sh, GUAN B L, SHI G Zh, et al. Polarization stable vertical-cavity surface-emitting laser with surface sub-wavelength gratings[J]. Acta Physica Sinica, 2012, 61(18):184208(in Chinese). [2] LI X S, NING Y Q, ZHANG X, et al. Influence of grating parameters on reflectivity of Si/SiO2 high contrast gratings[J]. Chinese Journal of Luminescence, 2015, 36(7):806-810(in Chinese). doi: 10.3788/fgxb [3] HUANG M C Y, ZHOU Y, CHANGHASNAIN C J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating[J].Nature Photonics, 2007, 297(1):119-122. [4] SONG M G, CAO L Q, LIU F M, et al. Optimized design of grating coupling packaging structure on silicon substrate[J]. Laser Technology, 2017, 41(4):479-483(in Chinese). [5] ANSBAEK T, CHUNG I S, SEMENOVA E S, et al. 1060nm tunable monolithic high index contrast subwavelength grating VCSEL[J]. IEEE Photonics Technology Letters, 2013, 25(4):365-367. doi: 10.1109/LPT.2012.2236087 [6] JIANG X W, GUAN B, LIU X, et al. The influence of sub-wavelength grating on wavelength tuning range in VCSEL[C]//2015 International Conference on Optoelectronics and Microelectronics. NewYork, USA: IEEE, 2016: 43-46. [7] HAGLUND E, GUSTAVSSON J S, SORIN W V, et al. Multi-wavelength VCSEL arrays using high-contrast gratings[J]. Proceedings of the SPIE, 2017, 10113:101130B. doi: 10.1117/12.2256348 [8] DAVANI H A, KOGEL B, DEBERNARDI P, et al. Polarization investigation of a tunable high-speed short-wavelength bulk-micromachined MEMS-VCSEL[J]. Proceedings of the SPIE, 2012, 8276:82760T. doi: 10.1117/12.908262 [9] JIANG X W, GUAN B L. Polarization research of VCSEL based on sub-wavelength grating[J]. Chinese Journal of Luminescence, 2017, 38(6):729-734(in Chinese). doi: 10.3788/fgxb [10] HARRIS J S, SULLIVAN T O, SARMIENTO T, et al. Emerging applications for vertical cavity surface emitting lasers[J]. Semiconductor Science and Technology, 2011, 26(1):014010. doi: 10.1088/0268-1242/26/1/014010 [11] TORRE M S, MASOLLER C. Fundamentals, technology and applications of vertical-cavity surface-emitting lasers[J].Berlin, Germary:Springer, 2014:120-122. [12] DEGEN C, FISCHER I, ELSÄβER W. Transverse modes in oxide confined VCSELs:influence of pump profile, spatial hole burning, and thermal effects[J]. Optics Express, 1999, 5(3):38-47. doi: 10.1364/OE.5.000038 [13] JAYARAMAN V, GOODNOUGH T J, BEAM T L, et al. Continuous-wave operation of single-transverse-mode 1310nm VCSELs up to 115/spl deg/C[J]. IEEE Photonics Technology Letters, 2000, 12(12):1595-1597. doi: 10.1109/68.896318 [14] COX J A. Guided-mode grating resonant filters for VCSEL applications[J]. Proceedings of the SPIE, 1998, 3291:70-76. doi: 10.1117/12.310571 [15] OLINER A A, HESSEL A. A new theory of Wood's anomalies on optical grating[J]. Applied Optics, 1965, 4(10):1275-1299. doi: 10.1364/AO.4.001275 [16] WANG S S, MAGNUSSON R. Theory and application of guide-mode resonance folters[J]. Applied Optics, 1993, 32(14):2606-2613. doi: 10.1364/AO.32.002606 [17] FU X, YI K, SHAO J, et al. Nonpolarizing guide-mode resonance filter[J]. Optics Letters, 2009, 34(2):122-124. [18] BOYE R R, ZIOLKOWSKI R W, KOSTUK R K. Resonant waveguide mode-grating switching device with nonlinear optical material[J]. Applied Optics, 1999, 38(24):5181-5185. doi: 10.1364/AO.38.005181 [19] SHARON A, GLASBERG S, ROSENBLATT D, et al. Metal-based resonant grating waveguide structures[J]. Journal of the Optical Society of America, 1997, A14(11):2038-2059. [20] CHARLES W H, LI L F. Effective-medium theory of zeroth-order lamellar gratings in conical mountings[J]. Journal of Optical Society of America, 1993, A10(10):2217-2225.