-
根据光纤中N信道前向瞬态受激喇曼散射耦合波方程[17],得到可调谐全光波长转换器理论模型。利用光纤中受激喇曼散射的放大原理来实现波长转换技术[18],假设其中的一路波道所传输的信号为抽运信号光,另一路传输的是可调谐探测光,得到两波道解析解功率形式:
$ {P_i}\left( {z, t} \right) = {P_i}\left( {t - z/u} \right){\rm{exp}}( - \alpha z){\rm{exp}}( - {G_{i, {\rm{p}}}}) $
(1) $ {G_{i, {\rm{p}}}} = - \frac{{{g_{\rm{R}}}}}{{M{A_{\rm{e}}}}}{P_{\rm{p}}}(t - z/u)\frac{{{\nu _{{\rm{avg}}}}}}{{{\nu _{\rm{p}}}}}{L_{\rm{e}}} $
(2) $ {L_{\rm{e}}} = (1 - {{\rm{e}}^{ - \alpha z}}){\alpha ^ - }^1 $
(3) 式中,Pi(t-z/u)为i波道t时刻、z处的输入探测光功率,u为光信号的群速度;Pi(z, t)为转换后的信号光功率;Pp(t-z/u)为i波道t时刻、z处的输入抽运光功率;gR为探测光与抽运光的喇曼增益系数;Gi, p为第i信道的探测光与抽运光的增益;νp为抽运光的频率;νavg为波道中的平均光频率;α为线性衰减系数;Ae为有效模场面积;M为保偏系数;z为光纤长度;Le为有效作用距离。
图 1为抽运光波长λp=1450nm时光子晶体光纤的喇曼增益谱[19],给出了喇曼系数gR随频移Δν的变化曲线。
为了获取较大波长转换范围,应尽可能地选取较大拟合频移范围,选取增益谱拟合范围为4THz~18THz。对增益曲线采用高斯拟合,得到高斯拟合函数如下式所示:
$ \begin{array}{l} {g_{\rm{R}}} = 3.590{\rm{exp}}{\left( { - \frac{{\Delta \nu - 12.71}}{{2.54}}} \right)^2}\\ \;\;\;\;\;\;\;\;\;\;{\rm{ + }}3.16{\rm{exp}}{\left( { - \frac{{\Delta \nu - 10.75}}{{9.28}}} \right)^2}, \left( {\Delta \nu \in \left[ {4, 18} \right]{\rm{THz}}} \right) \end{array} $
(4) 拟合之后与实际数值误差在5%之内,其中Δν为抽运光与探测光的频移差。
-
抽运光功率为Pp,第i信道探测光的功率为Pi,当Pp≫Pi, 可以近似认为所有探测光的平均频率与抽运光的频率近似相等,即νavg≈νp[20],从(2)式可得:
$ {G_{i, {\rm{p}}}}{\rm{ = }} - \frac{{{g_{\rm{R}}}}}{{M{A_{\rm{e}}}}}{P_{\rm{p}}}(t - z/u){L_{\rm{e}}} $
(5) 得到喇曼增益系数gR:
$ {g_{\rm{R}}} = \frac{{ - {G_{i, {\rm{p}}}}M{A_{\rm{e}}}}}{{{P_{\rm{p}}}(t - z/u){L_{\rm{e}}}}} $
(6) 由(1)式可以得到:
$ {G_{i, {\rm{p}}}} = - \left[ {{\rm{ln}}\frac{{{P_i}\left( {z, t} \right)}}{{{P_i}\left( {t - z/u} \right)}} + \alpha z} \right] $
(7) 将(7)式代入(6)式可得:
$ {g_{\rm{R}}} = \frac{{\left\{ {{\rm{ln}}\left[ {\frac{{{P_i}\left( {z, t} \right)}}{{{P_i}\left( {t - z/u} \right)}}} \right] + \alpha z} \right\}\alpha M{A_{\rm{e}}}}}{{{P_{\rm{p}}}(t - z/u)[1 - {\rm{exp}}( - \alpha z)]}} $
(8) 由于ITU-T的G.697中关于最低光接收机灵敏度的规定要求光接收机灵敏度为-18dBm,即可调谐波长转换范围选取的增益范围必须使转换后输出的探测光功率Pi(z, t)≥-18dBm,若输入抽运光功率为3W,光纤长度为0.5km,有效截面积为3μm2,代入(8)式可计算出临界喇曼增益系数gR, min=2.577W-1·km-1,保证转换输出功率不小于最低灵敏度-18dBm,进而由(4)式得到近似可调谐范围为[5.264, 17.829]THz,对应的频移范围为[175.291,593.706]cm-1,可以通过频移公式计算可调谐宽带波长转换范围[1487.82, 1586.58]nm:
$ \Delta \nu = c\left| {\frac{1}{{{\lambda _{\rm{p}}}}} - \frac{1}{{{\lambda _i}}}} \right| \times {10^7} $
(9) 式中,c为光速,λp为抽运光波长,λi为探测光波长。
一种可调谐的宽带喇曼波长转换器
A tunable broadband Raman wavelength converter
-
摘要: 为了提高宽带波长转换技术的响应速度,采用高非线性光子晶体光纤,设计了一种受激喇曼散射的可调谐全光宽带波长转换器。基于光纤中喇曼效应,对光子晶体光纤喇曼增益谱采取高斯曲线进行拟合,建立了喇曼波长转换器的理论模型,并进行了仿真分析,讨论了光纤长度对转换效率的影响。结果表明,在符合通信系统的条件下,实现了100nm转换带宽,波段为1487nm~1587nm,Q因子随探测光波长变化与喇曼增益谱走势相同,其波长转换质量最优处在喇曼增益系数最大处。该研究对未来光网络的波长转换器波长分配以及光纤长度的配置研究具有参考意义。Abstract: In order to improve the response speed of broadband wavelength conversion technology, a tunable all-optical broadband wavelength converter based on stimulated Raman scattering (SRS) using highly nonlinear photonic crystal fiber (PCF) was designed.Based on Raman effect in optical fiber, Raman gain spectrum of photonic crystal fiber was fitted by Gaussian curve.The theoretical model of a Raman wavelength converter was established, and the effect of fiber length on conversion efficiency was discussed.The results show that 100nm conversion bandwidth is achieved under the condition of the communication system.The bandwidth is 1487nm~1587nm.Q factor changes with the wavelength of probe light and the trend of Raman gain spectrum is the same.The best wavelength conversion quality is at the maximum Raman gain coefficient.The study is of great significance to the wavelength assignment of wavelength converters and the configuration of fiber length in future optical networks.
-
-
[1] XU J H, LENG B, LI D, et al. All-optical wavelength conversion based on stimulated Raman scattering in optical fiber[J]. Acta Photonica Sinica, 2013, 42(9):1009-1017(in Chinese). doi: 10.3788/gzxb [2] ZHU Y X, CHEN H M. 40Gb/s optical 3R-regeneration using FWM in SOA and SPM in HNLF[J]. Acta Photonica Sinica, 2007, 36(s1):49-52(in Chinese). [3] FRIIS S M, MEJLING L, ROTTWITT K. Effects of Raman scattering and attenuation in silica fiber-based parametric frequency conversion[J]. Optics Express, 2017, 25(7):7324-7337. doi: 10.1364/OE.25.007324 [4] ZHAO Y. Equal output optical power of Raman multi-wavelength converter based on chalcogenide fiber[D]. Xi'an: Xi'an University of Posts and Telecommunications, 2015: 4-37(in Chinese). [5] XU T, SHEVCHENKO N A, LAVERY D, et al. Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems.[J]. Optics Express, 2017, 25(4):3311-3326. doi: 10.1364/OE.25.003311 [6] GONG J M, SHEN Q. On effect of SRS in all-optical multiple wavelength conversion to achieve the output-power flattering[J]. Journal of Xi'an University of Posts and Telecommunications, 2013, 18(3):67-70(in Chinese). [7] GONG J M, SHEN Y N, GUO C, et al. Tunable Raman wavelength conversion based on tellurium-based fiber[J]. Semiconductor Optoelectronics, 2017, 38(6):868-871(in Chinese). [8] ZHANG Z X, YE Zh Q, SANG M H, et al. Wavelength conversion based on cross-phase modulation[J]. Laser Technology, 2008, 32(6):587-589(in Chinese). [9] ZHAO B, WANG M Y, SHI W H, et al. Wavelength conversion based on cross-phase modulation of high nonlinear photonic crystal fiber[J]. Semiconductor Optoelectronics, 2014, 35(4):687-690(in Chinese). [10] CUI L L, WANG H L, LI W, et al. Study on gain recovery time of wavelength conversion based on single-port-coupled QD-SOA[J]. Laser Technology, 2016, 40(5):742-745(in Chinese). [11] HUI Zh Q, ZHANG J G. All-optical format conversion non-return-to-zero to return-to-zero based on four-wave mixing in photonic crystal fiber[J]. Acta Physica Sinia, 2012, 61(1):014217(in Chin-ese). [12] ZHAO B. Wavelength conversion based on cross-phase modulation of highly nonlinear photonic crystal fibers[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2013: 10-43(in Chinese). [13] SEMRAU D L, KILLEY R, BAYVEL P. Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated Raman scattering[J]. Optics Express, 2017, 25(12) 13024-13034. doi: 10.1364/OE.25.013024 [14] CHEN Y F, HAN Q, YAN W Ch, et al. Magnetic-fluid-coated photonic crystal fiber and FBG for magnetic field and temperature sensing[J]. IEEE Photonics Technology Letters, 2016, 28(23):2665-2668. doi: 10.1109/LPT.2016.2615057 [15] ZHANG X D, CHEN N, NIE F K, et al. Dispersion characteristics analysis of photonic crystal fibers based on structure parameters and filling modes[J]. Laser Technology, 2018, 42(1):48-52(in Ch-inese). [16] VILLARROEL J, GRANDPIERRE A G. On statistical effects on stimulated Raman cross-talk[J]. Journal of Physics, 2005, B53(12):2601-2612. [17] GONG J M. Dense wavelength division multiplexing in a quartz optical fiber communication systems stimulated Raman scattering and stimulated Brillouin scattering effect[D]. Xi'an: Xi'an Jiaotong University, 1999: 57-74(in Chinese). [18] HAMMANI K, PICOZZI A, FINOT C. Extreme statistics in Raman fiber amplifiers:from experiments to analytical description[J]. Optics Communications, 2010, 284(10/11):2594-2603. [19] GONG J M, GUO C, SHEN Y N, et al. Gain-flattened photonic crystal raman fiber amplifier[J]. Acta Photonica Sinica, 2017, 46(7):723002(in Chinese). doi: 10.3788/gzxb [20] XU J H, ZHAO Y, LENG B, et al. All-optical wavelength conversion based on stimulated Raman scattering in optical fiber[J]. Journal of Applied Optics, 2013, 34(5):882-888(in Chinese). [21] GONG J M, MENG L H, YANG M, et al. All optical wavelength conversion for stimulated Raman scattering based on photonic crystal fiber[J]. Infrared and Laser Engineering, 2016, 45(12):117-123(in Chinese).