高级检索

激光回馈双折射测量系统波片光轴的自动定位

邓勇, 马响

邓勇, 马响. 激光回馈双折射测量系统波片光轴的自动定位[J]. 激光技术, 2019, 43(2): 217-221. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.013
引用本文: 邓勇, 马响. 激光回馈双折射测量系统波片光轴的自动定位[J]. 激光技术, 2019, 43(2): 217-221. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.013
DENG Yong, MA Xiang. Automatic positioning of optical axis of wave-plate in a laser feedback birefringence measurement system[J]. LASER TECHNOLOGY, 2019, 43(2): 217-221. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.013
Citation: DENG Yong, MA Xiang. Automatic positioning of optical axis of wave-plate in a laser feedback birefringence measurement system[J]. LASER TECHNOLOGY, 2019, 43(2): 217-221. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.013

激光回馈双折射测量系统波片光轴的自动定位

基金项目: 

国家自然科学基金资助项目 61475082

详细信息
    作者简介:

    邓勇(1965-), 男, 教授, 主要从事测试技术及仪器方面的研究工作。E-mail:dengy@ntu.edu.cn

  • 中图分类号: TN249

Automatic positioning of optical axis of wave-plate in a laser feedback birefringence measurement system

  • 摘要: 为了解决传统双折射测量系统在调节光学元件的过程中,结构复杂、耗时长且不状态稳定的问题,采用计算偏振跳变曲线中o光和e光低电平占空比的方法,增加了自动旋转波片的功能,优化出一套具有较高工作效率的双折射测量系统。该系统可自动调整波片快轴方向,使其可对准激光器的本征偏振方向,减少了人为判断波片快轴时可能引入的测量误差。结果表明,波片相位延迟的最大偏差为0.65°,标准差降低28%。双折射测量系统的测量精度及稳定性满足工业化生产的要求。
    Abstract: In order to solve the problem of complex structure, time-consuming and unstable state in the process of adjusting optical elements in a traditional birefringence measurement system, the duty cycles of o light and e light at low levels in polarization flipping curves were calculated.The function of automatic rotating wave-plate was added in a birefringence measurement system optimized with high efficiency.The system can automatically adjust the direction of fast axis of the wave-plate aligned with the intrinsic polarization direction of laser and reduce the measurement error that may be introduced when judging the fast axis of wave-plate artificially.After many measurements, the results show that the maximum deviation of wave-plate phase delay is 0.65°, and the standard deviation is reduced by 28%.The measurement accuracy and stability of birefringence measurement systems have met the requirements of industrial production.
  • Figure  1.   Graph of polarization flipping

    Figure  2.   Oscillogram after dividing the light through Wollaston prism

    Figure  3.   Schematic diagram of measurement device

    Figure  4.   Flow chart of control program

    Figure  5.   Polarization flipping graph after system optimization

    Table  1   Analysis of duty cycle of the low level of ordinary light and extraordinary light

    experiment times the traditional way of
    adjusting wave-plate
    the optimized mode of
    adjusting wave-plate
    1 0.4653 0.4762
    2 0.4655 0.4715
    3 0.4685 0.4823
    4 0.4547 0.4712
    5 0.4667 0.4695
    6 0.4675 0.4757
    7 0.4695 0.4707
    8 0.4515 0.4837
    9 0.4682 0.4722
    10 0.4705 0.4812
    average 0.4648 0.4754
    standard deviation 0.0064 0.0053
    下载: 导出CSV

    Table  2   Analysis of the measured value of phase retardation of λ/4 wave-plate

    experiment
    times
    the measured value of
    the wave-plate before
    the system is optimized/(°)
    the measured value
    of the wave-plate after
    the system is optimized/(°)
    1 89.12 89.66
    2 89.25 90.07
    3 88.77 89.44
    4 89.04 89.54
    5 89.23 89.77
    6 89.07 89.37
    7 89.33 89.75
    8 88.47 89.90
    9 89.42 89.35
    10 89.63 89.58
    average 89.11 89.64
    standard
    deviation
    0.3103 0.2219
    下载: 导出CSV
  • [1]

    FEI L, ZHANG S, LI Y, et al. Polarization control in a He-Ne laser using birefringence feedback[J]. Optics Express, 2005, 13(8):3117-3122. DOI: 10.1364-OPEX.13.003117/

    [2]

    GUO B, ZHU K, ZHANG S, et al. Single-spot two-dimensional displacement measurement based on self-mixing interferometry[J]. Optica, 2017, 4(7):729-732. http://cn.bing.com/academic/profile?id=f61c43fbde1a7ecc76e54a23b52f8a27&encoded=0&v=paper_preview&mkt=zh-cn

    [3]

    LI H H, ZHANG Sh L, TAN Y D, et al. Wave plate phase retardation measurement on contact block based on optical feedback[J]. Journal of Applied Optics, 2011, 32(5):1004-1008(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YYGX201105039.htm

    [4]

    CUI L, ZHANG Sh L. Semi-classical theory model for feedback effect of orthogonally polarized dual frequency He-Ne laser[J]. Optics Express, 2005, 13(17):6558-6563. http://cn.bing.com/academic/profile?id=7bb535e1804f430227052b3d349d4554&encoded=0&v=paper_preview&mkt=zh-cn

    [5]

    LIU M, ZHANG Sh L, LIU W X, et al. Error source and its elimination in phase retardation measurement of wave plate based on laser feedback[J]. Journal of Applied Optics, 2008, 29(6):961-966(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYGX200806030.htm

    [6]

    TAN Y D, ZHANG Sh L. Orthogonally linearly polarized dual frequency Nd:YAG lasers with tunable frequency difference and its application in precision angle measurement[J]. Chinese Physics Letters, 2007, 24(9):2590-2593. http://cn.bing.com/academic/profile?id=1e8a56ee9ff7dadb7719e04c3f94d7a7&encoded=0&v=paper_preview&mkt=zh-cn

    [7]

    WU Y, TAN Y D, ZHANG Sh L, et al. Polarization characteristics of He-Ne laser with different directions of polarized feedback[J]. Applied Optics, 2013, 52(22):5371-5375. http://cn.bing.com/academic/profile?id=dc96e3f668cbe720f475db03b612fdd3&encoded=0&v=paper_preview&mkt=zh-cn

    [8]

    WU Y, TAN Y D, ZENG Z, et al. Note:High-performance He-Ne laser feedback interferometer with birefringence feedback cavity scanned by piezoelectric transducer[J]. Review of Scientific Instruments, 2013, 84(5):180-184. http://d.old.wanfangdata.com.cn/Periodical/yckj201606013

    [9]

    ZENG M, DING J X. Polarization characteristics of external cavity He-Ne lasers[J]. Laser Technology, 1992, 16(1):21-28(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS199201008.htm

    [10]

    ZENG Z, QU X, TAN Y, et al. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects[J]. Optics Express, 2015, 23(13):16977-16983. http://cn.bing.com/academic/profile?id=e4b596bab84971c10409f0131cbae00c&encoded=0&v=paper_preview&mkt=zh-cn

    [11]

    WEI Zh M, YANG K Y. Controller of multi-axis motorized optical stages based on DAQ card and multiplexer[J].Laser Journal, 2010, 31(5):38-39(in Chinese). http://cn.bing.com/academic/profile?id=999074267b8e586715c3f97034372be5&encoded=0&v=paper_preview&mkt=zh-cn

    [12]

    WANG L, LI G H, KONG Ch, et al. Phase retardation measurement with two λ/4 wave-plates[J]. Laser Technology, 2007, 31(6):663-664(in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-jgjs200706031.htm

    [13]

    XU L, ZHANG Sh L, TAN Y D, et al. Simultaneous measurement of refractive-index and thickness for optical materials by laser feedback interferometry[J]. Review of Scientific Instruments, 2014, 85(8):1693-1697. http://cn.bing.com/academic/profile?id=e3e0636cf75d6450bf065ec02871c872&encoded=0&v=paper_preview&mkt=zh-cn

    [14]

    LIN Y H, QU X Sh, WANG D G, et al. Research on measurement system for phase retardation for wave plates based on auto data acquisition[J]. Measurement & Control Technology, 2010, 29(6):41-44(in Chinese).

    [15]

    WAN L Y, SUN J F, LIU L R, et al. Effects of optical axis deviation of wave-plates on the amplitude and phase of beams separated by a polarizing splitter[J]. Optical Technique, 2010, 36(2):307-310(in Chinese).

    [16]

    ZHANG J, LI G H. The theory of correcting the retardation devation of a wave-plate[J]. Laser Technology, 2006, 30(3):274-276(in Chinese).

    [17]

    SUO G G, WANG X R, HUANG Z Q, et al. Test method for birefaingence of Fourier quarter-wave-plate.Laser Technology, 2016, 40(1):131-135(in Chinese).

    [18]

    GAO A, KONG Y, XIA G, et al. Research of temperature insensitivity of uniaxial birefringence filters[J]. Laser Technology, 2016, 40(4):476-478(in Chinese).

    [19]

    XU C, TAN Y, ZHANG S, et al. The structure measurement of micro-electro-mechanical system devices by the optical feedback tomography technology[J]. Applied Physics Letters, 2013, 102(22):3648-3704.

    [20]

    ZHANG P, TAN Y D, LIU W X, et al. Methods for optical phase retardation measurement:a review[J]. Science China, 2013, 56(5):1155-1164.

图(5)  /  表(2)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-16
  • 修回日期:  2018-09-02
  • 发布日期:  2019-03-24

目录

    /

    返回文章
    返回