-
由光栅方程:
$ m\lambda = d(\sin i + \sin \theta ) $
(1) 可得:
$ \Delta \lambda = d\cos \theta \Delta \theta $
(2) 式中, m为衍射级次, λ为入射激光波长, d为光栅刻线宽度, i为入射角, θ为衍射角。对于满足Littrow条件的光束, 入射角等于衍射角。在光谱组束系统中, 激光线宽可用Δλ表示。当仅考虑色散造成的影响时, 光束经过光栅后的发射角为:
$ \beta = \alpha + \Delta {\theta _\lambda }\ $
(3) 式中, α为入射光束的发散角, Δθλ表示因光束具有一定线宽, 经光栅色散时衍射角增大的角度。在图 1、图 2所示的光谱组束系统中, Δθλ=Δθ。
在光纤激光光谱组束系统中, 光纤芯径即为光源宽度。对于光源宽度为D的光束, 经焦距为f的透镜准直后, 其发散角为:
$ \alpha = D/f $
(4) 当仅考虑谐振腔分辨率影响时, 如图 1所示的外腔结构输出激光线宽为[20]:
$ \Delta \lambda = Dd\cos \theta /f $
(5) 将(2)式、(5)式代入(3)式, 可得衍射光束的发散角:
$ \beta = D/f + {(d\cos \theta )^{ - 1}} \times Dd\cos \theta /f = 2D/f = 2\alpha $
(6) 在光纤激光光谱组束系统中, 光束经过组束元件即光栅衍射后, 腰斑半径不变, 光束发散角为原发散角的2倍, 如图 3所示。由(4)式及(6)式可知, 组束系统中光纤芯径对组束后光束的发散角也有影响。
-
实验中采用透射光栅, 衍射极次为-1级, 则m=-1, 采用的光栅1000line/mm, 波长为1080nm, 理论计算线宽为0.2nm, 衍射角32.60°。采用输出光纤为大模场双包无源光纤(Nufen GDF-20/400), 芯径为20μm。在ZEMAX设计中, 通过设计3个波长分为1080nm, 1080.05nm, 1079.95nm的高斯光源从同一位置沿相同方向出射, 表征线宽全宽为0.2nm的光束。在非序列中加入高斯光源, 束腰宽度为9μm, 数值孔径为0.06, 对应的位置均为0.15mm, 光功率均为1.00W。
选取的光栅为透射光栅, 光栅刻线数取为1000line/mm, 衍射级次选取-1, 与x轴方向夹角设为32.60°。
外腔反馈系统空间结构示意图如图 4所示。组束方向准直透镜焦距选用75mm焦距柱透镜, 非组束方向准直透镜选用30mm柱透镜, 光栅选取1000line/mm。
在激光输出端面处分别采集出射光与反馈光在组束方向上的光场强度分布, 其分布如图 5所示。当激光输出端面上的光斑半宽度与出射光斑宽度相同时, 返回的光能占输出光能的72.73%。
按照上面所述的设置, 引入第2路子束激光, 进行双路组束仿真。第2路子束激光波长设置为1060nm, 组束方向准直透镜焦距选用75mm焦距柱透镜, 非组束方向准直透镜选用30mm柱透镜, 其空间结构见图 6。
分别采集单路外腔反馈与双路组束输出时, 光栅后方与部分反射平面镜后方的组束方向光场强度分布, 其分布如图 7所示。双路子束激光组束时光场分布与单路外腔反馈时光场分布一致。
用于光纤激光器光谱组束的外腔反馈研究
Research of external cavity feedback for spectral beam combining of fiber lasers
-
摘要: 为了解决光纤激光器外腔光谱组束中存在像差以及发光单元反馈不足等问题,采用将组束系统中单个传输透镜准直和聚焦功能分离的方法,搭建了光纤激光外腔反馈系统,实现了激光波长的锁定。结果表明,该系统光光转换效率为91.5%,反馈输出线宽为0.16nm,输出功率为29.7W,组束方向M2=1.241,非组束方向M2=1.171,实验结果同理论分析相符。该外腔反馈方案可以应用于光纤激光器光谱组束。Abstract: In order to solve the problems, such as aberration in spectrum beam combining (SBC) of external cavity of fiber lasers and insufficient feedback of light emitting units, separating the collimation and focusing function of a single transmission lens in a beam combining system instead of multiple lenses, an external cavity feedback system for an optical fiber laser was set up. Laser wavelength was locked. Through theoretical analysis and experimental verification, the result shows that, optical-optical efficiency is 91.5%, output line width of feedback is 0.16nm, output power is 29.7W, M2 in beam combining direction is 1.241, and M2 of non beam combining direction is 1.171. Experimental results are in agreement with theoretical analysis. The external cavity feedback scheme can be applied to spectrum beam combining of fiber lasers.
-
Key words:
- lasers /
- fiber laser /
- external cavity feedback /
- spectral beam combining
-
-
[1] LOU Q H, ZHOU J, WANG Zh J. Analysis of high-power fiber laser weapons[J]. Laser Technology, 2003, 27(3):161-165(in Chinese). [2] BACHMAMM F, LOOSEN P, POPRAWE R. High power diode lasers techology and applications[M]. New York, USA:Springer, 2007:38-39, 215-217. [3] ZERVAS M N, CODEMARD C A. High power fiber lasers:a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5):0904123. [4] DAWSON J W, MESSERLY M J, BEACH R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17):13240. doi: 10.1364/OE.16.013240 [5] CIAPURIN I V, GLEBOV L B, GLEBOVA L N, et al. Incoherent combining of 100W Yb-fiber laser beams by PTR Bragg grating, advances in fiber devices[J]. Proceedings of the SPIE, 2003, 4974:209-219. doi: 10.1117/12.501670 [6] MADASAMY P, LOFTUS T, THOMAS P, et al. Comparison of spectral beam combining approaches for high power fiber laser systems[J]. Proceedings of the SPIE 2008, 6952:1-10. [7] LOFTUS T H, THOMAS A M, HOFFMAN P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Select Topics in Quantum Electronics, 2007, 13(3):487-497. doi: 10.1109/JSTQE.2007.896568 [8] AFZAL R S, HONEA E, SAVAGE-LUECHS M, et al. Spectrally beam combined fiber lasers for high power, efficiency and brightness[J]. Proceedings of the SPIE, 2012, 8547:1-4. [9] ZHANG D Y, HAO J P, ZHU Ch, et al. Review on spectral beam combining of fiber lasers[J]. Laser & Infrared, 2016, 46(5):517-518(in Chinese). [10] COOK C C, FAN T Y. Spectral beam combining of Yb-doped fiber lasers in an external cavity[J]. Advanced Solid-State Lasers, 1999, 26(10):163-166. [11] AUGUST S J, GOYAL A K, AGGARWAL R L, et al. Wavelength beam combining of ytterbium fiber lasers.[J]. Optics Letters, 2003, 28(5):331-332. doi: 10.1364/OL.28.000331 [12] RÖSER F, KLINGEBIEL S, LIEM A, et al. Spectral beam combining of fiber lasers[J]. Proceedings of the SPIE, 2006, 6102:61020T-1. doi: 10.1117/12.659451 [13] KLINGEBIEL S, RÖSER F, ORTAC B, et al. Spectral beam combining of Yb-doped fiber lasers with high efficiency[J].Journal of the Optical Society of America, 2007, 24(8):1716-1720. doi: 10.1364/JOSAB.24.001716 [14] THOMAS H L. High power spectrally beam combined fiber laser with near-diffraction limited beam quality[J].Proceedings of the SPIE, 2007, 6453:64530S-1. [15] WIRTH C, SCHMIDT O, TSYBIN I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2kW[J]. Optics Letters, 2011, 36(16):3118-3119. doi: 10.1364/OL.36.003118 [16] HONEA E, AFZAL R S, SAVAGE-LEUCHS M, et al. Advances in fiber laser spectral beam combinings for power scaling[J]. Proceedings of the SPIE, 2016, 9730:97300Y-1. doi: 10.1117/12.2207613 [17] MA Y, YAN H, TIAN F, et al. Common aperture spectral beam combination of fiber lasers with 5kW power high-efficiency and high-quality output.[J].High Power Laser and Particle Beams, 2015, 27(5):040101(in Chinese). [18] MA Y, YAN H, PENG W J, et al. 9.6kW common aperture sprectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 2016, 43(9):0901009(in Chinese). doi: 10.3788/CJL [19] ZHENG Y, YANG Y, WANG J, et al.10.8K spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11):12063-12071. doi: 10.1364/OE.24.012063 [20] LIU A, MEAD R, VATTER T, et al. Spectral beam combining of high power fiber lasers[J].Proceedings of the SPIE, 2004, 5335:83-84.