Study on application of optical fiber displacement sensor in measurement of PET bottle wall thickness
-
摘要: 为了实现对聚对苯二甲酸乙二醇酯(PET)瓶胚壁厚实时、高效、高精度的测量,采用理论仿真结合实验验证的方法,以标称3.5mm厚型的PET瓶胚为例给出设计实例,建立了PET瓶胚壁厚测量的光学模型,根据光线追迹原理分析验证反射式光纤位移传感器在测量PET瓶胚壁厚中应用的可行性,并利用LIGHTTOOLS软件进行仿真模拟,最终设计出一种基于反射式光纤位移传感器对PET瓶胚壁厚实时测量的装置,并进行了实验验证。结果表明,实验装置的测量量程为3.20mm~3.80mm,线性度为15.8%,灵敏度为0.8448mV/μm,该装置相比传统测量效率提高了30%以上。这对提高实际检测效率和精度具有参考应用价值。Abstract: In order to realize real-time, high efficiency and high precision measurement of wall thickness of a polyethylene terephthalate (PET) bottle, through theoretical simulation and experimental verification, taking a PET bottle in 3.5mm thick as an example, the optical model for measuring the wall thickness of the PET bottle was set up. According to the principle of ray tracing, the feasibility of applying reflective fiber optic displacement sensor to measure the wall thickness of a PET bottle was proved. The simulation was carried out by LIGHTTOOLS software. Finally, a device based on reflective optical fiber displacement sensor to measure the wall thickness of PET bottle was designed and verified by experiment. The results show that, the measurement range is 3.20mm~3.80mm, the linearity is 15.8% and the sensitivity is 0.8448mV/μm. Compared with the traditional measurement method, the measurement efficiency of the experimental device will be increased more than 30%. The study has reference value for improving the efficiency and accuracy of actual detection.
-
-
Table 1 Wall thickness d and the corresponding voltage U
d/mm U/V 3.258 2.546 3.274 2.533 3.291 2.519 3.308 2.505 3.326 2.490 3.345 2.474 3.362 2.461 3.385 2.440 3.406 2.422 3.427 2.405 3.451 2.384 3.471 2.364 3.494 2.348 3.519 2.325 3.539 2.309 3.5560 2.294 3.577 2.277 3.602 2.255 3.615 2.245 3.633 2.229 3.651 2.214 -
[1] ZHOU Zh H, DAI J P. The present situation and development prospect of the production and application of PET bottles in China[J].Synthetic Technology & Application, 2001, 16(3):21-25(in Ch-inese).
[2] ZHOU Y. PET medical bottle injection stretch blow molding and process optimization research[D]. Nanchang: Nanchang University, 2014: 1-24(in Chinese).
[3] JIA W, SUN W. Research on micro displacement measurement technology based on reflective plastic optical fiber sensor[J].Electronic Test, 2017, 18(9):45-46(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-WDZC201709020.htm
[4] WEI Ch L, HUANG Ch Y, FENG J. Study of reflective optical fiber displacement sensor[J]. Journal of State Grid Technology College, 2014, 17(2):19-23(in Chinese). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_09c2fe16234f7796e20cbbf1ea0cfca0
[5] GUO Y, WANG Y T, HAO B.Non-touch fiber-optic reflective displacement sensor for roller wear[J].Semiconductor Photonics and Technology, 2004, 39(4):275-277. http://www.cnki.com.cn/Article/CJFDTotal-BDTY200404013.htm
[6] YANG X H. Research on reflective intensity modulated optical fiber displacement sensor and application in digital gauge[D]. Chengdu: Sichuan University, 2004: 19-40(in Chinese).
[7] WAN D A. High precision reflective optical fiber displacement sensor[J]. Process Automation Instrumentation, 1990, 11(10):14-17(in Chinese). http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC026150757/
[8] XIAO S R.Investigation on the properties of the two-way optical fiber sensor for displacement[J].Acta Photonica Sinica, 1998, 27(s1):126-129.
[9] ZHANG X, GONG X X, DING Y Q, et al.Controllable fiber laser pulse light sources based on embedded control technology[J]. Laser Technology, 2016, 40(5):711-715(in Chinese). http://www.jgjs.net.cn/EN/Y2016/V40/I5/711
[10] ZHU Y H, HE F T, PENG X L.Research of characteristics of laser speckle of plastic optical fiber[J]. Laser Technology, 2016, 40(1):122-125(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201601028.htm
[11] WANG L M, WEN J G, JIANG Y Ch, et al.Design of a temperature control system for semiconductor laser based on digital filtering[J]. Laser Technology, 2016, 40(5):701-705(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201605017.htm
[12] WANG Z Q, DUAN J, ZENG X Y. Research on high precision temperature control system for high power semiconductor laser[J]. Laser Technology, 2015, 39(3):353-356(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JGJS201503016.htm
[13] ZHANG R F, SUN L H, LÜ Ch G. Design of constant current source for high power semiconductor laser[J]. Laser Technology, 2012, 36(1):80-83(in Chinese).
[14] CHEN W, YANG Z, ZHANG W. Design of a high precision laser temperature control circuit[J]. Laser Technology, 2014, 38(5):669-674(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201405020.htm
[15] LUO L, HU J Ch, WANG Ch Y, et al.Design of high-precision dri-ving power and temperature control circuit for semiconductor laser[J]. Laser Technology, 2017, 41(2):200-204(in Chinese).
[16] QI Zh L. Study on the constant temperature control and driving method of small power semiconductor lasers[D]. Harbin: Harbin University of Science and Technology, 2012: 13-18(in Chinese).
[17] FU W Y, PENG Sh L. Study on the application of silicon photodiode in photoelectric detection circuit[J]. Journal of Xuchang Teachers College(Social Science Edition), 2001, 20(5):19-22(in Ch-inese).
[18] HAN Y. Noise analysis and processing of photoelectric detection circuit[D]. Harbin: Harbin Engineering University, 2011: 13-20(in Chinese).
[19] SUN Y H, MENG H B.Design of a medicinal semiconductor laser driven power[J].Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(13):2556-2557(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-XDKF200813052.htm
[20] FAN X G, SUN H Y, TANG W Y, et al.The design of a laser diode pulsed current source based on FPGA[J].Laser Journal, 2007, 28(2):19-20(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGZZ200702009.htm
[21] ROCCO A, DENATALE G, DENATALE P.A diode laser-based spectrometer for measurements of volcanic gases[J].Applied Phy-sics, 2004, 78(2):235-240. DOI: 10.1007/s00340-003-1339-8
[22] LU Y Zh, WANG X B, MIAO L, et al.Third-harmonic and fourthharmonic generations of CO2 laser radiation in a GaSe crystal[J].Optics Communications, 2011, 284(14):3622-3625. DOI: 10.1016/j.optcom.2011.03.086