-
由于PET瓶胚壁厚不能连续变化,因此利用LIGHTTOOLS软件针对3.5mm型瓶胚设计了仿真实验进行仿真模拟,选择光源光功率为20mW,入射光纤和出射光纤纤芯半径均为0.5mm,数值孔径均为0.5,光纤间距a=0.5mm,每次改变厚度0.005mm,并记录对应接收光纤接收到的光强。具体数据绘制成点线图, 如图 8所示(其中横轴d表示瓶胚壁厚,纵轴P表示接收光功率)。从图 8中可以看出,此曲线变化完全符合反射式光纤位移传感器调制理论,从而证明反射式光纤位移传感器在测量PET瓶胚壁厚中应用的可行性。
-
实验装置由光纤探头、固定支架、自适应调节装置以及可旋转底座组成。装置图如图 9所示。测试过程,将被测PET瓶胚固定底座上,光纤探头固定在自适应装置上,通过调节使光纤探头贴紧PET瓶胚外壁,之后旋转底座,以及上下移动固定装置实现对PET瓶胚瓶颈部分进行全方位测量。通过电路部分便可得到每个测试点对应的电压值,将电压值记录。标定过程,将PET瓶胚沿瓶颈方向剖开,对传感器测量点进行测量,从而实现标定。为了保证测量精度,每一个测试点都进行3次测量取平均值,将此平均值作为测量值,共进行500次测量,部分实验数据如表 1所示。将测得的500组实验数据利用ORIGIN8软件进行处理分析,得到实际瓶胚厚度d与探测器输出电压U的关系图,如图 10所示。
Table 1. Wall thickness d and the corresponding voltage U
d/mm U/V 3.258 2.546 3.274 2.533 3.291 2.519 3.308 2.505 3.326 2.490 3.345 2.474 3.362 2.461 3.385 2.440 3.406 2.422 3.427 2.405 3.451 2.384 3.471 2.364 3.494 2.348 3.519 2.325 3.539 2.309 3.5560 2.294 3.577 2.277 3.602 2.255 3.615 2.245 3.633 2.229 3.651 2.214 从图 10中可以看出, 实验数据基本符合反射式光纤位移传感器调制理论,线性度比较良好。
-
根据表 1中的数据对其进行线性度和灵敏度分析。
(1) 线性度用δline表示,则有:
$ {\delta _{{\rm{line}}}} = \frac{{\Delta {Y_{\max }}}}{{{Y_{{\rm{FS}}}}}} \times 100\% = 15.8\% \ $
(1) 式中, ΔYmax是实验曲线与拟合直线间的最大偏差;YFS是传感器满偏量程。
(2) 灵敏度用k1表示,则有:
$ {k_1} = \frac{{输出电压变化量}}{{输入厚度变化量}} = \frac{{\Delta U}}{{\Delta x}} = 0.8448{\rm{mV}}/{\rm{ \mathsf{ μ} m}} $
(2)
光纤位移传感器在PET瓶胚壁厚测量中的应用研究
Study on application of optical fiber displacement sensor in measurement of PET bottle wall thickness
-
摘要: 为了实现对聚对苯二甲酸乙二醇酯(PET)瓶胚壁厚实时、高效、高精度的测量,采用理论仿真结合实验验证的方法,以标称3.5mm厚型的PET瓶胚为例给出设计实例,建立了PET瓶胚壁厚测量的光学模型,根据光线追迹原理分析验证反射式光纤位移传感器在测量PET瓶胚壁厚中应用的可行性,并利用LIGHTTOOLS软件进行仿真模拟,最终设计出一种基于反射式光纤位移传感器对PET瓶胚壁厚实时测量的装置,并进行了实验验证。结果表明,实验装置的测量量程为3.20mm~3.80mm,线性度为15.8%,灵敏度为0.8448mV/μm,该装置相比传统测量效率提高了30%以上。这对提高实际检测效率和精度具有参考应用价值。Abstract: In order to realize real-time, high efficiency and high precision measurement of wall thickness of a polyethylene terephthalate (PET) bottle, through theoretical simulation and experimental verification, taking a PET bottle in 3.5mm thick as an example, the optical model for measuring the wall thickness of the PET bottle was set up. According to the principle of ray tracing, the feasibility of applying reflective fiber optic displacement sensor to measure the wall thickness of a PET bottle was proved. The simulation was carried out by LIGHTTOOLS software. Finally, a device based on reflective optical fiber displacement sensor to measure the wall thickness of PET bottle was designed and verified by experiment. The results show that, the measurement range is 3.20mm~3.80mm, the linearity is 15.8% and the sensitivity is 0.8448mV/μm. Compared with the traditional measurement method, the measurement efficiency of the experimental device will be increased more than 30%. The study has reference value for improving the efficiency and accuracy of actual detection.
-
Table 1. Wall thickness d and the corresponding voltage U
d/mm U/V 3.258 2.546 3.274 2.533 3.291 2.519 3.308 2.505 3.326 2.490 3.345 2.474 3.362 2.461 3.385 2.440 3.406 2.422 3.427 2.405 3.451 2.384 3.471 2.364 3.494 2.348 3.519 2.325 3.539 2.309 3.5560 2.294 3.577 2.277 3.602 2.255 3.615 2.245 3.633 2.229 3.651 2.214 -
[1] ZHOU Zh H, DAI J P. The present situation and development prospect of the production and application of PET bottles in China[J].Synthetic Technology & Application, 2001, 16(3):21-25(in Ch-inese). [2] ZHOU Y. PET medical bottle injection stretch blow molding and process optimization research[D]. Nanchang: Nanchang University, 2014: 1-24(in Chinese). [3] JIA W, SUN W. Research on micro displacement measurement technology based on reflective plastic optical fiber sensor[J].Electronic Test, 2017, 18(9):45-46(in Chinese). [4] WEI Ch L, HUANG Ch Y, FENG J. Study of reflective optical fiber displacement sensor[J]. Journal of State Grid Technology College, 2014, 17(2):19-23(in Chinese). [5] GUO Y, WANG Y T, HAO B.Non-touch fiber-optic reflective displacement sensor for roller wear[J].Semiconductor Photonics and Technology, 2004, 39(4):275-277. [6] YANG X H. Research on reflective intensity modulated optical fiber displacement sensor and application in digital gauge[D]. Chengdu: Sichuan University, 2004: 19-40(in Chinese). [7] WAN D A. High precision reflective optical fiber displacement sensor[J]. Process Automation Instrumentation, 1990, 11(10):14-17(in Chinese). [8] XIAO S R.Investigation on the properties of the two-way optical fiber sensor for displacement[J].Acta Photonica Sinica, 1998, 27(s1):126-129. [9] ZHANG X, GONG X X, DING Y Q, et al.Controllable fiber laser pulse light sources based on embedded control technology[J]. Laser Technology, 2016, 40(5):711-715(in Chinese). [10] ZHU Y H, HE F T, PENG X L.Research of characteristics of laser speckle of plastic optical fiber[J]. Laser Technology, 2016, 40(1):122-125(in Chinese). [11] WANG L M, WEN J G, JIANG Y Ch, et al.Design of a temperature control system for semiconductor laser based on digital filtering[J]. Laser Technology, 2016, 40(5):701-705(in Chinese). [12] WANG Z Q, DUAN J, ZENG X Y. Research on high precision temperature control system for high power semiconductor laser[J]. Laser Technology, 2015, 39(3):353-356(in Chinese). [13] ZHANG R F, SUN L H, LÜ Ch G. Design of constant current source for high power semiconductor laser[J]. Laser Technology, 2012, 36(1):80-83(in Chinese). [14] CHEN W, YANG Z, ZHANG W. Design of a high precision laser temperature control circuit[J]. Laser Technology, 2014, 38(5):669-674(in Chinese). [15] LUO L, HU J Ch, WANG Ch Y, et al.Design of high-precision dri-ving power and temperature control circuit for semiconductor laser[J]. Laser Technology, 2017, 41(2):200-204(in Chinese). [16] QI Zh L. Study on the constant temperature control and driving method of small power semiconductor lasers[D]. Harbin: Harbin University of Science and Technology, 2012: 13-18(in Chinese). [17] FU W Y, PENG Sh L. Study on the application of silicon photodiode in photoelectric detection circuit[J]. Journal of Xuchang Teachers College(Social Science Edition), 2001, 20(5):19-22(in Ch-inese). [18] HAN Y. Noise analysis and processing of photoelectric detection circuit[D]. Harbin: Harbin Engineering University, 2011: 13-20(in Chinese). [19] SUN Y H, MENG H B.Design of a medicinal semiconductor laser driven power[J].Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(13):2556-2557(in Chinese). [20] FAN X G, SUN H Y, TANG W Y, et al.The design of a laser diode pulsed current source based on FPGA[J].Laser Journal, 2007, 28(2):19-20(in Chinese). [21] ROCCO A, DENATALE G, DENATALE P.A diode laser-based spectrometer for measurements of volcanic gases[J].Applied Phy-sics, 2004, 78(2):235-240. doi: 10.1007/s00340-003-1339-8 [22] LU Y Zh, WANG X B, MIAO L, et al.Third-harmonic and fourthharmonic generations of CO2 laser radiation in a GaSe crystal[J].Optics Communications, 2011, 284(14):3622-3625. doi: 10.1016/j.optcom.2011.03.086